Bài 1. Định lí Ta-lét trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta-lét
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất (c.c.c)
Bài 6. Trường hợp đồng dạng thứ hai (c.g.c)
Bài 7. Trường hợp đồng dạng thứ ba (g.g)
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp đều
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Tứ giác \(ABCD \) có hai góc vuông tại đỉnh \(A\) và \(C,\) hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O,\) \(\widehat {BAO} = \widehat {BDC}\) (h.37)
Chứng minh:
a) \(∆ ABO\) đồng dạng \(∆ DCO\).
b) \(∆ BCO\) đồng dạng \(∆ ADO\).
Phương pháp giải - Xem chi tiết
Sử dụng: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.
Lời giải chi tiết
a) \(\widehat {BAO} = \widehat {BDC}\) (gt) hay \(\widehat {BAO} = \widehat {ODC}\)
Xét \( ∆ABO\) và \(∆ DCO\) có:
+) \(\widehat {BAO} = \widehat {ODC}\) (chứng minh trên)
+) \(\widehat {AOB} = \widehat {DOC}\) (đối đỉnh)
\( \Rightarrow ∆ ABO\) đồng dạng \(∆ DCO\) (g.g)
b) Vì \(∆ ABO\) đồng dạng \(∆ DCO\) nên \({\widehat B_1} = {\widehat C_1}\) (1)
Mà \({\widehat C_1} + {\widehat C_2} = \widehat {BCD} = 90^\circ \) (2)
Xét tam giác \(ABD\) có \(\widehat A = 90^\circ \) nên \({\widehat B_1} + {\widehat D_2} = 90^\circ \) (3)
Từ (1), (2) và (3) suy ra: \({\widehat C_2} = {\widehat D_2}\)
Xét \(∆ BCO\) và \(∆ ADO\) có:
\({\widehat C_2} = {\widehat D_2}\) (chứng minh trên )
\(\widehat {BOC} = \widehat {AOD}\) (đối đỉnh)
\( \Rightarrow ∆ BCO\) đồng dạng \(∆ ADO\) (g.g).
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Từ giữa thế kỷ XVI đến năm 1917)
Cumulative review
Unit 16: Inventions - Các phát minh
Chương 5. Hiđro - nước
Skills Practice B
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8