Đề bài
Chứng minh rằng nếu hàm số \(f\left( z \right)\) có đạo hàm đến cấp n thì
\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( n \right)} = {a^n}f_z^{\left( n \right)}\left( {ax + b} \right).\)
Phương pháp giải - Xem chi tiết
HD: Chứng minh bằng quy nạp.
Lời giải chi tiết
Với \(n = 1\) ta có:
\(\begin{array}{l}{\left[ {f\left( {ax + b} \right)} \right]_x}'\\ = \left( {ax + b} \right)'{f_z}'\left( {ax + b} \right)\\ = a{f_z}'\left( {ax + b} \right)\end{array}\)
Nên (*) đúng.
Giả sử (*) đúng với \(n = k\), nghĩa là
\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( k \right)} = {a^k}f_z^{\left( k \right)}\left( {ax + b} \right)\)
Ta chứng minh (*) đúng với \(n = k + 1\), nghĩa là:
\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( {k + 1} \right)} = {a^{k + 1}}f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\)
Thật vậy,
\(\begin{array}{l}\left[ {f\left( {ax + b} \right)} \right]_x^{\left( {k + 1} \right)}\\ = \left\{ {\left[ {f\left( {ax + b} \right)} \right]_x^{\left( k \right)}} \right\}'\\ = \left[ {{a^k}f_z^{\left( k \right)}\left( {ax + b} \right)} \right]'\\ = {a^k}.\left[ {f_z^{\left( k \right)}\left( {ax + b} \right)} \right]'\\ = {a^k}.\left( {ax + b} \right)'.f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\\ = {a^k}.a.f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\\ = {a^{k + 1}}f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\end{array}\)
Suy ra đpcm.
Unit 6: On the go
Chủ đề 1: Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Tiếng Anh lớp 11
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Đề kiểm tra giữa kì 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11