PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

Bài 51 trang 97 SBT toán 8 tập 2

Đề bài

Cho tam giác \(ABC.\)

a) Tìm trên cạnh \(AB\) điểm \(M\) sao cho \(\displaystyle {{AM} \over {MB}} = {2 \over 3}\); tìm trên cạnh \(AC\) điểm \(N\) sao cho \(\displaystyle {{AN} \over {NC}} = {2 \over 3}\)

b) Vẽ đoạn thẳng \(MN.\) Hỏi rằng hai đường thẳng \(MN\) và \(BC\) có song song với nhau không? Vì sao?

c) Cho biết chu vi và diện tích tam giác \(ABC\) thứ tự là \(P\) và \(S.\) Tính chu vi và diện tích tam giác \(AMN.\)

Phương pháp giải - Xem chi tiết

Áp dụng định lí: Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác đồng dạng với tam giác đã cho.

Lời giải chi tiết

 

a) Cách vẽ:

- Kẻ tia \(Ax\) bất kì khác tia \(AB, AC.\)

- Trên tia \(Ax,\) lấy hai điểm \(E\) và \(F\) sao cho \(AE = 2 (cm), EF = 3 (cm).\)

- Kẻ đường thẳng \(FB.\)

- Từ \(E\) kẻ đường thẳng song song với \(FB\) cắt \(AB\) tại \( M\).

- Kẻ đường thẳng \(FC\)

- Từ \(E\) kẻ đường thẳng song song với \(FC\) cắt \(AC\) tại \(N\).

Ta được hai điểm \(M, N\) cần dựng.

Chứng minh:

Trong tam giác \(AFB\) có \(EM // FB\) (theo cách vẽ)

Theo định lí Ta-lét, ta có:

\(\displaystyle{{AM} \over {MB}} = {{AE} \over {EF}} = {2 \over 3}\)

Trong tam giác \(AFC\) có \(EN // FC\)  (theo cách vẽ)

Theo định lí Ta-lét, ta có:

\(\displaystyle {{AN} \over {NC}} = {{AE} \over {EF}} = {2 \over 3}\)

Vậy \(M, N\) là hai điểm cần tìm.

b) Trong tam giác \(ABC\) có \(\displaystyle{{AM} \over {MB}} = {{AN} \over {NC}} = {2 \over 3}\) nên theo định lí đảo của định lí Ta-lét thì \(MN // BC.\)

c) Gọi \(p’\) và \(S’\) là chu vi và diện tích của \(∆ AMN\).

Ta có \(\displaystyle \dfrac{{AM}}{{MB}} = \dfrac{2}{3} \Rightarrow \dfrac{{AM}}{{AB}} = \dfrac{2}{5}\)

Trong tam giác \(ABC\) có \(MN // BC\) nên \(\dfrac{{AM}}{{AB}} = \dfrac{{AN}}{{AC}} = \dfrac{{MN}}{{BC}}\) hay \( ∆ AMN\) đồng dạng \(∆ ABC\) (c.c.c)

Với tỉ số đồng dạng: \( k=\dfrac{{AM}}{{AB}} = \dfrac{2}{5}\)

Ta có: 

\(\dfrac{{AM}}{{AB}} = \dfrac{{AN}}{{AC}} = \dfrac{{MN}}{{BC}}\)\( = \dfrac{{AM + AN + MN}}{{AB + AC + BC}} = \dfrac{{p'}}{{{P}}}\) 

Suy ra \(\displaystyle {{p'} \over P} = {2 \over 5} = k\Rightarrow p' = {2 \over 5}P \)

Theo tính chất hai tam giác đồng dạng ta có: 

\(\displaystyle {{S'} \over S}=k^2 = {\left( {{2 \over 5}} \right)^2} = {4 \over 25} \)

\(\displaystyle\Rightarrow S' = {4 \over 25}S .\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved