Giải bài 5 trang 103 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Cho hình ngũ giác đều ABCDE có tâm O. Chứng minh rằng: \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  + \overrightarrow {OE}  = \overrightarrow 0 \)

Lời giải chi tiết

Không mất tính tổng quát giả sử \(OA = OB = OC = OD = OE = 1\)

Ta có: \(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOA} = {360^ \circ }:5 = {72^ \circ }\)

+ Dựng hình bình hành OEHB.

Vì OE=OB nên OEHB là hình thoi, suy ra H thuộc tia phân giác của \(\widehat {EOB}\)hay H thuộc OA.

\( \Rightarrow \overrightarrow {OA}  + \left( {\overrightarrow {OB}  + \overrightarrow {OE} } \right) = \overrightarrow {OA}  + \overrightarrow {OH}  = \overrightarrow {OM} \) với M thuộc OA sao cho OM = OH +OA.

+ Tính OM:

Xét tam giác OHE, ta có:

\(\widehat {HOE} = 72;OE = HE = 1\) \( \Rightarrow \widehat {OHE} = {72^o} \Rightarrow \widehat {OEH} = {180^ \circ } - {72^o} - {72^o} = {36^ \circ }\)

Áp dụng định lí cosin: \(O{H^2} = O{E^2} + E{H^2} - 2.OE.OH.\cos E\)

\(\begin{array}{l} \Leftrightarrow O{H^2} = 1 + 1 - 2.\cos {36^ \circ } \approx 0,382\\ \Rightarrow OH = 0,618\\ \Rightarrow OM = OH + OA = 0,618 + 1 = 1,618\end{array}\)

+ Dựng hình bình hành OCKD, ta có: \(\overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow {OK} \)

Vì OC=OD nên OCKD là hình thoi => OK là tia phân giác của \(\widehat {COD}\)

\( \Rightarrow \widehat {COK} = \frac{1}{2}\widehat {COD} = \frac{1}{2}{.72^o} = {36^o}\)

\( \Rightarrow \widehat {KOA} = \widehat {KOC} + \widehat {COB} + \widehat {BOA} = {36^ \circ } + {72^ \circ } + {72^ \circ } = {180^ \circ }\)

Hay K, O, A thẳng hàng, do đó K, O, M thẳng hàng (do M thuộc OA).

+Tính OK:

Xét tam giác OCK, ta có:

\(\begin{array}{l}OC = CK = 1;\widehat {COK} = {36^o} \Rightarrow \widehat {CKO} = {36^o}\\ \Rightarrow \widehat {OCK} = {180^o} - {36^o} - {36^o} = {108^o}\\ \Rightarrow O{K^2} = O{C^2} + C{K^2} - 2.OC.CK.\cos \widehat {OCK}\\ \Leftrightarrow O{K^2} = 1 + 1 - 2.\cos {108^o} \approx 2,618\\ \Rightarrow OK = 1,618 = OM\end{array}\)

Vậy O là trung điểm KM hay \(\overrightarrow {OK}  + \overrightarrow {OM}  = \overrightarrow 0 \)

\(\begin{array}{l} \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  + \overrightarrow {OE}  = \left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OE} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right)\\ = \overrightarrow {OM}  + \overrightarrow {OK}  = \overrightarrow 0 (dpcm)\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved