1. Nội dung câu hỏi
Cho \(\tan \alpha = 2\). Giá trị của biểu thức \(A = \frac{{{{\sin }^2}\alpha - 2\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha + 3{{\sin }^2}\alpha }}\) bằng:
A. 4
B. 0
C. 1
D. 2
2. Phương pháp giải
Do \(\tan \alpha \) xác định nên \(\cos \alpha \ne 0\).
Chia cả tử và mẫu của \(A\) cho \({\cos ^2}\alpha \ne 0\) và sử dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\).
3. Lời giải chi tiết
Do \(\tan \alpha \) xác định nên \(\cos \alpha \ne 0\).
Chia cả tử và mẫu của \(A\) cho \({\cos ^2}\alpha \ne 0\) ta được:
\(A = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - \frac{{2\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha }}}}{{\frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + 3\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}}} = \frac{{{{\left( {\frac{{\sin \alpha }}{{\cos \alpha }}} \right)}^2} - 2\frac{{\sin \alpha }}{{\cos \alpha }}}}{{1 + 3{{\left( {\frac{{\sin \alpha }}{{\cos \alpha }}} \right)}^2}}} = \frac{{{{\tan }^2}\alpha - 2\tan \alpha }}{{1 + 3{{\tan }^2}\alpha }} = \frac{{{2^2} - 2.2}}{{1 + {{3.2}^2}}} = 0\)
Đáp án đúng là B.
Chuyên đề 1. Dinh dưỡng khoáng - tăng năng suất cây trồng và nông nghiệp sạch
Unit 12: Celebrations
Tải 10 đề thi học kì 1 Sinh 11
Bài 9: Tiết 3: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Nhật Bản - Tập bản đồ Địa lí 11
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11