PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 49 trang 60 SBT toán 9 tập 2

Đề bài

Chứng minh rằng khi \(a\) và \(c\) trái dấu thì phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\) chỉ có hai nghiệm và chúng là hai số đối nhau.

Phương pháp giải - Xem chi tiết

Giải phương trình trùng phương \(a{x^4} + {\rm{ }}b{x^2} + {\rm{ }}c{\rm{ }} = {\rm{ }}0{\rm{ }}\left( {a{\rm{ }} \ne {\rm{ }}0} \right)\)

+ Đặt \({x^2} = {\rm{ }}t,{\rm{ }}t{\rm{ }} \ge {\rm{ }}0\).

+ Giải phương trình \(a{t^2} + {\rm{ }}bt{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\).

+ Với mỗi giá trị tìm được của \(t\) (thỏa mãn \( t \ge 0\)), lại giải phương trình \({x^2} = {\rm{ }}t\).

Lời giải chi tiết

Phương trình \(a{x^4} + b{x^2} + c = 0\)

Đặt \({x^2} = t \Rightarrow t \ge 0\)

Ta có phương trình ẩn \(t\): \(a{t^2} + bt + c = 0\)

Vì \(a\) và \(c\) trái dấu suy ra \(ac < 0.\)

Phương trình có hai nghiệm phân biệt \(t_1\) và \(t_2\).

Theo hệ thức Vi-ét ta có: \(\displaystyle {t_1}.{t_2} = {c \over a} < 0\) nên \(t_1\) và \(t_2\) trái dấu.

Giả sử \(t_1< 0; t_2> 0\).

Vì \(t ≥ 0 ⇒ t_1< 0\) (loại).

\( \Rightarrow {x^2} = {t_2} \Rightarrow x =  \pm \sqrt {{t_2}} \).

Vậy phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\) có hệ số \(a\) và \(c\) trái dấu thì phương trình trùng phương có \(2\) nghiệm đối nhau.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved