PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 48 trang 164 SBT toán 9 tập 1

Đề bài

Cho đường  tròn \((O),\) điểm \(A\) nằm bên ngoài đường tròn. Kẻ các tiếp tuyến \(AM, AN\) với đường tròn \((M,N\) là các tiếp điểm\().\)

\(a)\) Chứng minh rằng \(OA ⊥ MN.\)

\(b)\) Vẽ đường kính \(NOC.\) Chứng minh rằng \(MC // AO.\)

\(c)\) Tính độ dài các cạnh của tam giác \(AMN\) biết \(OM = 3cm,\) \(OA = 5cm.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

\(*\)) Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì

+) Điểm đó cách đều hai tiếp điểm.

+) Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.

\(*\)) Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.

Lời giải chi tiết

 

\(a)\) Xét đường tròn (O) có \(AM\) và \(AN\) là hai tiếp tuyến cắt nhau tại A nên \(AM = AN\) ( tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác \(AMN\) cân tại \(A\)

Mặt khác \(AO\) là đường phân giác của góc \(MAN\) ( tính chất hai tiếp tuyến cắt nhau)

Suy ra \(AO\) là đường cao của tam giác \(AMN\) (tính chất tam giác cân)

Vậy \(OA ⊥ MN.\)

\(b)\) Tam giác \(MNC\) nội tiếp trong đường tròn \((O)\) có \(NC\) là đường kính nên \(\widehat {CMN} = 90^\circ \)

suy ra: \(MN ⊥ MC\)

Mà      \(OA ⊥ MN\) (chứng minh trên)

Suy ra:  \(OA // MC\)

\(c)\) Ta có: \(AN ⊥ NC\) (tính chất tiếp tuyến)

Áp dụng định lí Pi-ta-go vào tam giác vuông \(AON\) ta có:

\(A{O^2} = A{N^2} + O{N^2}\)

Suy ra:  \(A{N^2} = A{O^2} - O{N^2} = {5^2} - {3^2} = 16\)

            \( AN = 4 (cm)\)

Suy ra: \(AM = AN = 4 (cm)\)

Gọi \(H\) là giao điểm của \(AO\) và \(MN\). Xét tam giác AMN cân tại A có AH là đường phân giác nên AH cũng là đường trung tuyến (tính chất tam giác cân). 

Suy ra \(MH = NH =  \displaystyle {{MN} \over 2}\) 

Tam giác \(AON\) vuông tại \(N\) có \(NH ⊥ AO.\) Theo hệ thức lượng trong tam giác vuông, ta có:

 \(OA.NH = AN.ON\)\(  \Rightarrow NH = \displaystyle {{AN.ON} \over {AO}}\)\( =  \displaystyle {{4.3} \over 5} = 2,4 (cm) \)

Từ đó: \(MN = 2.NH = 2.2,4 = 4,8 (cm).\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved