Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
\(a)\) Tính cạnh của một ngũ giác đều nội tiếp đường tròn bán kính \(3cm.\)
\(b)\) Tính cạnh của một ngũ giác đều ngoại tiếp đường tròn bán kính \(3cm.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác.
+) Đường tròn tiếp xúc với tất cả các cạnh của đa giác được gọi là đường tròn nội tiếp đa giác.
+) Số đo góc ở tâm chắn mỗi cạnh của đa giác đều \(n\) cạnh bằng \(\dfrac{360^\circ}{n}.\)
Lời giải chi tiết
\(a)\) Kẻ \(OH ⊥ AB,\) ta có: \(HA = HB = \displaystyle {1 \over 2}AB,OA = R = 3cm\)
Vì \(ABCDE\) là ngũ giác đều nên: \(\widehat {BOA} = \displaystyle{{360^\circ } \over 5} = 72^\circ \)
Suy ra \(\widehat {HOA} =\dfrac{\widehat{BOA}}{2}\)\(= \displaystyle{{72^\circ } \over 5} = 36^\circ \)
Trong tam giác vuông \(OHA\) vuông tại \(H\) ta có:
\(AH = OA.\sin \widehat {HOA}\)
\( \Rightarrow AB = 2.AH=2OA.\sin \widehat {HOA}\)\( = 2.3.\sin 36^\circ \approx 3,522\) \((cm)\)
\(b)\) Từ giả thiết suy ra \(OH = r = 3 cm\)
Trong tam giác vuông \(OHA\) vuông tại \(H\) ta có:
\(AH = OH.\tan \widehat {HOA}\) \( \Rightarrow AB =2.AH= 2.OH.\tan \widehat {HOA}\)\( = 2.3.\tan 36^\circ \approx 4,356\) \((cm)\)
Đề thi vào 10 môn Toán Bạc Liêu
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 9
Đề thi vào 10 môn Văn Khánh Hòa
Tải 30 đề ôn tập học kì 1 Văn 9
Tải 30 đề kiểm tra giữa kì 2 Toán 9