1. Nội dung câu hỏi
Một vòng quay trò chơi có bán kinh 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách \(h\) (m) từ một cabin gắn tại điểm \(A\) của vòng quay đến mặt đất được tính bởi công thức \(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\); với \(t\) là thời gian quay của vòng quay tính bằng phút \(\left( {t \ge 0} \right)\) (Xem hình vẽ)
a) Tính chu kì của hàm số \(h\left( t \right)\)
b) Khi \(t = 0\) (phút) thì khoảng cách của cabin đến mặt đất bằng bao nhiêu?
c) Khi quay một vòng lần thứ nhất tính từ thời điểm \(t = 0\) (phút), tại thời điểm nào của \(t\) thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao 86 m?
2. Phương pháp giải
a) Chu kì của hàm số chính là thời gian bán kính vòng quay quay hết 1 vòng.
b) Thay \(t = 0\) vào hàm số \(h\left( t \right)\) để tính khoảng cách của cabin đến mặt đất.
c) Cabin ở vị trí cao nhất khi hàm số \(h\left( t \right)\) đạt giá trị lớn nhất. Sử dụng tính chất \( - 1 \le \sin x \le 1\) để tìm giá trị lớn nhất của hàm \(h\left( t \right)\).
3. Lời giải chi tiết
a) Chu kì của hàm số chính là thời gian bán kính vòng quay quay hết 1 vòng. Do vòng quay trò chơi quay mỗi vòng hết 15 phút, chu kì của hàm số này là 15 phút.
b) Khoảng cách của cabin đến mặt đất tại thời điểm \(t = 0\) (phút) là:
\(h\left( 0 \right) = 57\sin \left( { - \frac{\pi }{2}} \right) + 57,5 = 0,5\) (m)
c) Do \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) \le 1 \Rightarrow 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) \le 57 \Rightarrow h\left( t \right) \le 114,5\)
Dấu bằng xảy ra \( \Leftrightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = 1 \Leftrightarrow \frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{2} + k2\pi \Leftrightarrow \frac{{2\pi }}{{15}}t = \pi + k2\pi \)
\( \Leftrightarrow t = \frac{{15}}{2} + 15k\) \(\left( {k \in \mathbb{Z}} \right)\)
Như vậy, kể từ thời điểm \(t = 0\) (phút), cabin đạt vị trí cao nhất tại thời điểm \(t = 7,5\) (phút)
Để tìm thời gian cabin đạt độ cao 86 m, ta cần phải tìm các giá trị của \(t\) để \(h\left( t \right) = 86\).
Ta có \(h\left( t \right) = 86 \Rightarrow 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5 = 86 \Rightarrow \sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2}\)
Theo Bài 46, ta có \(\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \\\frac{{2\pi }}{{15}}t - \frac{\pi }{2} = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 5 + 15k\\t = 10 + 15k\end{array} \right.\)
Như vậy, kể từ thời điểm \(t = 0\) (phút), cabin đạt được chiều cao 86 m lần đầu tiên khi \(t = 5\) (phút)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Vật lí lớp 11
Unit 4: The Body
Chuyên đề 1: Dinh dưỡng khoáng - Tăng năng suất cây trồng và nông nghiệp sạch
Chủ đề 5. Xây dựng cộng đồng văn minh
PHẦN 2. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11