Đề bài
Cho hai dãy số (un) và (vn). Chứng minh rằng nếu \(\lim {v_n} = 0\) và \(\left| {{u_n}} \right| \le {v_n}\) với mọi n thì \(\lim {u_n} = 0\)
Phương pháp giải - Xem chi tiết
Xem lại định nghĩa dãy số có giới hạn \(0\) tại đâ
Lời giải chi tiết
\(\lim {v_n} = 0 \Rightarrow \left| {{v_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1)
Vì \(\left| {{u_n}} \right| \le {v_n}\) và \({v_n} \le \left| {{v_n}} \right|\) với mọi n, nên \(\left| {{u_n}} \right| \le \left| {{v_n}} \right|\) với mọi n. (2)
Từ (1) và (2) suy ra \(\left| {{u_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là \(\lim {u_n} = 0\)
Đề thi giữa kì 1
Chuyên đề 2. Lí thuyết đồ thị
Chương 6. Chương trình con và lập trình có cấu trúc
Chuyên đề 3: Một số yếu tố vẽ kĩ thuật
Chuyên đề 2: Một số vấn đề về pháp luật dân sự
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11