Đề bài
Xét tính liên tục của hàm số
\(f\left( x \right) = \left\{ \matrix{
{{{x^2} + 5x + 4} \over {{x^3} + 1}},\,\,{\rm{ nếu }}\,\,x \ne - 1 \hfill \cr
1{\rm{ , \,\,nếu }}\,\,x = - 1 \hfill \cr} \right.\) trên tập xác định của nó.
Phương pháp giải - Xem chi tiết
Xét tính liên tục của hàm số tại \(x=-1\) và kết luận.
Lời giải chi tiết
Khi \(x\ne -1\) thì \(f(x)\) là hàm phân thức nên liên tục trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = \mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 5x + 4}}{{{x^3} + 1}}\\ = \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {x + 1} \right)\left( {x + 4} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to - 1} \dfrac{{x + 4}}{{{x^2} - x + 1}}\\ = \dfrac{{ - 1 + 4}}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}}\\ = 1\end{array}\)
Mà \(f\left( { - 1} \right) = 1\) nên \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = f\left( { - 1} \right) = 1\)
Vậy hàm số đã cho liên tục tại \(x = - 1\).
Do đó hàm số liên tục trên R.
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Unit 5: Challenges
Chủ đề 5: Đạo đức kinh doanh
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Tiếng Anh lớp 11
Skills (Units 5 - 6)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11