Câu hỏi 45 - Mục Bài tập trang 78

1. Nội dung câu hỏi

Cho hình thang \(ABCD\) có \(AB//CD\), \(AB = 4\)cm, \(DB = 6\) cm và \(\widehat {DAB} = \widehat {DBC}\). Tính độ dài \(CD\).

 

2. Phương pháp giải 

Áp dụng trường hợp đồng dạng thứ ba: góc – góc

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

 

3. Lời giải chi tiết

Ta có: \(\widehat {DAB} = \widehat {DBC}\) (giả thiết), \(\widehat {ABD} = \widehat {BDC}\) (hai góc so le trong). Suy ra \(\Delta ABD\backsim \Delta BDC\).

Do đó ta có \(\frac{{AB}}{{BD}} = \frac{{BD}}{{DC}}\), tức là \(CD = \frac{{B{D^2}}}{{AB}}\)

Từ đó: \(CD = \frac{{{6^2}}}{4} = 9\) (cm)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved