1. Nội dung câu hỏi
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{4}{{3x}}}}{{{x^2} - 1}}\)
b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)
c) \(\mathop {\lim }\limits_{x \to - {3^ + }} \frac{{ - 5 + x}}{{x + 3}}\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{14x + 2}}{{ - 7x + 1}}\)
e) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2{x^2}}}{{3x + 5}}\)
g) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}}\)
h) \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{{x^2} - 1}}\)
i) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 5x + 6}}{{x - 2}}\)
k) \(\mathop {\lim }\limits_{x \to 3} \frac{{ - {x^2} + 4x - 3}}{{{x^2} + 3x - 18}}\)
2. Phương pháp giải
Sử dụng các tính chất về giới hạn hàm số.
3. Lời giải chi tiết
a) Ta có \(\mathop {\lim }\limits_{x \to - \infty } \left( {2 + \frac{4}{{3x}}} \right) = \mathop {\lim }\limits_{x \to - \infty } 2 + \mathop {\lim }\limits_{x \to - \infty } \frac{4}{{3x}} = 2 + 0 = 2\).
Mặt khác, \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 1} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^2}\left( {1 - \frac{1}{{{x^2}}}} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } {x^2}.\mathop {\lim }\limits_{x \to - \infty } \left( {1 - \frac{1}{{{x^2}}}} \right) = + \infty \)
Suy ra \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{4}{{3x}}}}{{{x^2} - 1}} = 0\).
b) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \).
c) Ta có \(\mathop {\lim }\limits_{x \to - {3^ + }} \left( { - 5 + x} \right) = \left( { - 5} \right) + \left( { - 3} \right) = - 2 < 0\).
Suy ra \(\mathop {\lim }\limits_{x \to - {3^ + }} \frac{{ - 5 + x}}{{x + 3}} = - \infty \).
d) Ta có:\(\mathop {\lim }\limits_{x \to - \infty } \frac{{14x + 2}}{{ - 7x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {14 + \frac{2}{x}} \right)}}{{x\left( { - 7 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{14 + \frac{2}{x}}}{{ - 7 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to - \infty } 14 + \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to - \infty } \left( { - 7} \right) + \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}}}\)
\( = \frac{{14 + 0}}{{ - 7 + 0}} = - 2\).
e) Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2{x^2}}}{{3x + 5}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2{x^2}}}{{x\left( {3 + \frac{5}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x}}{{3 + \frac{5}{x}}}\).
Ta thấy \(\mathop {\lim }\limits_{x \to + \infty } \left( { - 2x} \right) = - \infty \) và \(\mathop {\lim }\limits_{x \to + \infty } \left( {3 + \frac{5}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } 3 + \mathop {\lim }\limits_{x \to + \infty } \frac{5}{x} = 3 + 0 = 3\).
Vậy \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x}}{{3 + \frac{5}{x}}} = - \infty \).
g) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2}\left( {4 + \frac{1}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left| x \right|\sqrt {4 + \frac{1}{{{x^2}}}} }}{{x\left( {1 + \frac{2}{x}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( { - x} \right)\sqrt {4 + \frac{1}{{{x^2}}}} }}{{x\left( {1 + \frac{2}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {4 + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}}\).
Vì \(\mathop {\lim }\limits_{x \to - \infty } \left( {4 + \frac{1}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to - \infty } 4 + \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{{x^2}}} = 4 + 0 = 4\) nên \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {4 + \frac{1}{{{x^2}}}} = \sqrt 4 = 2\).
Mặt khác, \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{2}{x}} \right) = \mathop {\lim }\limits_{x \to - \infty } 1 + \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x} = 1 + 0 = 1\).
Như vậy \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {4{x^2} + 1} }}{{x + 2}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {4 + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}} = \frac{{ - 2}}{1} = - 2\).
h) Ta có \(\mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to 1} 1}}{{\mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1}} = \frac{1}{{1 + 1}} = \frac{1}{2}\).
i) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 5x + 6}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x - 3} \right) = \mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 3 = 2 + 3 = 5\).
k) \(\mathop {\lim }\limits_{x \to 3} \frac{{ - {x^2} + 4x - 3}}{{{x^2} + 3x - 18}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {1 - x} \right)}}{{\left( {x - 3} \right)\left( {x + 6} \right)}} = \mathop {\lim }\limits_{x \to 3} \frac{{1 - x}}{{x + 6}} = \frac{{\mathop {\lim }\limits_{x \to 3} 1 - \mathop {\lim }\limits_{x \to 3} x}}{{\mathop {\lim }\limits_{x \to 3} x + \mathop {\lim }\limits_{x \to 3} 6}} = \frac{{1 - 3}}{{3 + 6}} = \frac{{ - 2}}{9}\).
Chương 6. Hợp chất carbonyl (Aldehyde - Ketone - Carboxylic acid
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Chủ đề 6: Văn hóa tiêu dùng
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chương 4. Chiến tranh bảo vệ Tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11