Trả lời câu hỏi 44 - Mục câu hỏi trắc nghiệm trang 56

1. Nội dung câu hỏi

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 1\), \({u_n} = \frac{1}{3}{u_{n - 1}} + 1\) với \(n \in {\mathbb{N}^*}\), \(n \ge 2\). Đặt \({v_n} = {u_n} - \frac{3}{2}\) với \(n \in {\mathbb{N}^*}\).

a)    Chứng minh rằng dãy số \(\left( {{v_n}} \right)\) là cấp số nhân. Tìm số hạng đầu, công bội của cấp số nhân đó.

b)    Tìm công thức số hạng tổng quát của \(\left( {{u_n}} \right)\), \(\left( {{v_n}} \right)\).

c)     Tính tổng \(S = {u_1} + {u_2} + {u_3} + ... + {u_{10}}\).


2. Phương pháp giải

a) Ta có \({v_n} = {u_n} - \frac{3}{2} = \frac{1}{3}{u_{n - 1}} + 1 - \frac{3}{2} = \frac{1}{3}{u_{n - 1}} - \frac{1}{2} = \frac{1}{3}\left( {{u_{n - 1}} - \frac{3}{2}} \right) = \frac{1}{3}{v_{n - 1}}\).

Như vậy \(\left( {{v_n}} \right)\) là cấp số nhân với số hạng đầu \({v_1} = {u_1} - \frac{3}{2} = 1 - \frac{3}{2} =  - \frac{1}{2}\) và công bội \(q = \frac{1}{3}\).

b) Do \(\left( {{v_n}} \right)\) là cấp số nhân, sử dụng công thức \({v_n} = {v_1}.{q^{n - 1}}\) để xác định công thức số hạng tổng quát của \(\left( {{v_n}} \right)\), từ đó ta tính được công thức số hạng tổng quát của \(\left( {{u_n}} \right)\).

c) Ta có:

\(S = {u_1} + {u_2} + {u_3} + ... + {u_{10}} = \left( {{u_1} - \frac{3}{2}} \right) + \left( {{u_2} - \frac{3}{2}} \right) + ... + \left( {{u_{10}} - \frac{3}{2}} \right) + \frac{3}{2}.10\)

\( = {v_1} + {v_2} + {v_3} + ... + {v_{10}} + 5 = {v_1}\frac{{1 - {q^{10}}}}{{1 - q}} + 5\).

 

3. Lời giải chi tiết

a) Xét \(\left( {{v_n}} \right)\), ta có \(\frac{{{v_n}}}{{{v_{n - 1}}}} = \frac{{{u_n} - \frac{3}{2}}}{{{u_{n - 1}} - \frac{3}{2}}} = \frac{{\frac{1}{3}{u_{n - 1}} + 1 - \frac{3}{2}}}{{{u_{n - 1}} - \frac{3}{2}}} = \frac{{\frac{1}{3}{u_{n - 1}} - \frac{1}{2}}}{{{u_{n - 1}} - \frac{3}{2}}} = \frac{{\frac{1}{3}\left( {{u_{n - 1}} - \frac{3}{2}} \right)}}{{{u_{n - 1}} - \frac{3}{2}}} = \frac{1}{3}\).

Như vậy \(\left( {{v_n}} \right)\) là cấp số nhân với công bội \(q = \frac{1}{3}\) và số hạng đầu \({v_1} = {u_1} - \frac{3}{2} = 1 - \frac{3}{2} =  - \frac{1}{2}\).

b) Do \(\left( {{v_n}} \right)\) là cấp số nhân, ta có \({v_n} = {v_1}.{q^{n - 1}} = \frac{{ - 1}}{2}.{\left( {\frac{1}{3}} \right)^{n - 1}} = \frac{{ - 1}}{{{{2.3}^{n - 1}}}}\).

Suy ra \({u_n} = {v_n} + \frac{3}{2} = \frac{{ - 1}}{{{{2.3}^{n - 1}}}} + \frac{3}{2} = \frac{{{3^n} - 1}}{{{{2.3}^{n - 1}}}}\).

c) Ta có:

\(S = {u_1} + {u_2} + {u_3} + ... + {u_{10}} = \left( {{u_1} - \frac{3}{2}} \right) + \left( {{u_2} - \frac{3}{2}} \right) + ... + \left( {{u_{10}} - \frac{3}{2}} \right) + \frac{3}{2}.10\)

\( = {v_1} + {v_2} + {v_3} + ... + {v_{10}} + 5 = {v_1}\frac{{1 - {q^{10}}}}{{1 - q}} + 5 = \frac{{ - 1}}{2}.\frac{{1 - {{\left( {\frac{1}{3}} \right)}^{10}}}}{{1 - \frac{1}{3}}} + 5 = \frac{{280483}}{{19683}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved