Trả lời câu hỏi 44 - Mục câu hỏi trắc nghiệm trang 104

1. Nội dung câu hỏi

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật, \(\left( {SAC} \right) \bot \left( {ABCD} \right)\). Gọi \(M\) là trung điểm của \(AD\), \(\left( {SBM} \right) \bot \left( {ABCD} \right)\). Giả sử \(SA = 5a\), \(AB = 3a\), \(AD = 4a\) và góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(\varphi \). Tính \(\cos \varphi \).


2. Phương pháp giải

Gọi \(H\) là giao điểm của \(BM\) và \(AC\). Ta chứng minh \(SH \bot \left( {ABCD} \right)\), từ đó suy ra \(\varphi  = \widehat {SAH}\).

 

3. Lời giải chi tiết

Gọi \(H\) là giao điểm của \(BM\) và \(AC\). Dễ dàng chứng minh được \(SH\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBM} \right)\). Hơn nữa, do \(\left( {SAC} \right) \bot \left( {ABCD} \right)\) và \(\left( {SBM} \right) \bot \left( {ABCD} \right)\), ta suy ra \(SH \bot \left( {ABCD} \right)\), tức \(H\) là hình chiếu của \(S\) trên \(\left( {ABCD} \right)\).

Do đó góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABCD} \right)\) chính là góc \(\widehat {SAH}\), tức là \(\varphi  = \widehat {SAH}\). Suy ra \(\cos \varphi  = \cos \widehat {SAH} = \frac{{AH}}{{SA}}\).

Vì \(ABCD\) là hình chữ nhật, nên \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 5a\).

Ta có \(AM = \frac{1}{2}AD = \frac{1}{2}.4a = 2a\).

Do \(AM\parallel BC\), ta suy ra \(\frac{{AH}}{{HC}} = \frac{{AM}}{{BC}} = \frac{{2a}}{{4a}} = \frac{1}{2}\). Như vậy \(\frac{{AH}}{{AC}} = \frac{1}{3}\).

Suy ra \(AH = \frac{{AC}}{3} = \frac{{5a}}{3}\).

Do đó \(\cos \varphi  = \frac{{AH}}{{SA}} = \frac{{\frac{{5a}}{3}}}{{5a}} = \frac{1}{3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved