Trả lời câu hỏi 43 - Mục câu hỏi trắc nghiệm trang 56

1. Nội dung câu hỏi

Cho cấp số nhân \(\left( {{u_n}} \right)\) biết \({u_1} =  - 1\), \(q = 3\).

a)    Tính tổng 10 số hạng đầu của cấp số nhân đó.

b)    Giả sử tổng \(m\) số hạng đầu của \(\left( {{u_n}} \right)\) bằng \( - 364\). Tìm \(m\)

c)     Tính tổng \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + \frac{1}{{{u_4}}} + \frac{1}{{{u_5}}}\).


2. Phương pháp giải

a, b) Sử dụng công thức \({S_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\)

c) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \frac{1}{{{u_n}}}\). Ta thấy dãy số \(\left( {{v_n}} \right)\) là cấp số nhân với công bội \(\frac{1}{3}\).

Sử dụng công thức \(S'_n = {v_1}\frac{{1 - q{'^n}}}{{1 - q'}}\)

 

3. Lời giải chi tiết

a) Do \(q = 3\) nên tổng 10 số hạng đầu của cấp số nhân \(\left( {{u_n}} \right)\) là:

\({S_{10}} = {u_1}\frac{{1 - {q^{10}}}}{{1 - q}} = \left( { - 1} \right)\frac{{1 - {3^{10}}}}{{1 - 3}} =  - \frac{{{3^{10}} - 1}}{2}\)

b) Do tổng của \(m\) số hạng đầu là \( - 364\), nên ta có \({S_m} = {u_1}\frac{{1 - {q^m}}}{{1 - q}} =  - 364\)

\( \Rightarrow \left( { - 1} \right)\frac{{1 - {3^m}}}{{1 - 3}} =  - 364 \Rightarrow \frac{{{3^m} - 1}}{2} = 364 \Rightarrow {3^m} - 1 = 728 \Rightarrow {3^m} = 729 \Rightarrow m = 6\).

Vậy \(m = 6\).

c) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \frac{1}{{{u_n}}}\). Ta có \(\frac{{{v_{n + 1}}}}{{{v_n}}} = \frac{1}{{{u_{n + 1}}}} :\frac{1}{{{u_n}}} = \frac{1}{{\frac{{{u_{n + 1}}}}{{{u_n}}}}} = \frac{1}{3}\).

Như vậy \(\left( {{v_n}} \right)\) là cấp số nhân với số hạng đầu \({v_1} = \frac{1}{{{u_1}}} = \frac{1}{{ - 1}} =  - 1\) và công bội \(q' = \frac{1}{3}\).

Vậy \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + \frac{1}{{{u_4}}} + \frac{1}{{{u_5}}} = {v_1} + {v_2} + {v_3} + {v_4} + {v_5}\)

\( = v{\rm{\_1}}\frac{{1 - {{\left( {q'} \right)}^5}}}{{1 - q'}} = \left( { - 1} \right)\frac{{1 - {{\left( {\frac{1}{3}} \right)}^5}}}{{1 - \left( {\frac{1}{3}} \right)}} =  - \frac{{121}}{{81}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved