1. Nội dung câu hỏi
Cho hình hộp chữ nhật \(ABCD \cdot A'B'C'D'\) có \(AB = a,AD = a\sqrt 2 \), góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({30^ \circ }\).
a) Tính theo a thể tích khối hộp chữ nhật.
b) Tính theo a khoảng cách giữa hai đường thẳng \(BD\) và \(CD'\).
2. Phương pháp giải
a) Góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABCD} \right)\) là góc giữa hai đường thẳng \(A'C\) và \(AC\) bằng \(\widehat {A'CA} = {30^ \circ }\)\( \Rightarrow AA'{\rm{\;}}\)
Thể tích khối hộp chữ nhật \(ABCD \cdot A'B'C'D'\) bằng \(AB \cdot AD \cdot AA' = \).
\({\rm{b)\;V\`i \;}}CD'//\left( {A'BD} \right){\rm{,BD}} \subset {\rm{\;}}\left( {A'BD} \right){\rm{\;}} \Rightarrow d\left( {CD',BD} \right) = d\left( {CD',\left( {A'BD} \right)} \right) = d\left( {D',\left( {A'BD} \right)} \right)\)
\(d\left( {D',\left( {A'BD} \right)} \right) = d\left( {{A_,}\left( {A'BD} \right)} \right){\rm{.\;}}\)
Đặt \(d\left( {A,\left( {A'BD} \right)} \right) = h\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{A^{{\rm{'}}2}}}} \Rightarrow h\).
Kết luận \(d\left( {CD',BD} \right)\).
3. Lời giải chi tiết
a) Góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABCD} \right)\) là góc giữa hai đường thẳng \(A'C\) và \(AC\) bằng \(\widehat {A'CA} = {30^ \circ }\)\( \Rightarrow AA' = AC \cdot {\rm{tan}}{30^ \circ } = a\sqrt 3 \cdot \frac{1}{{\sqrt 3 }} = a{\rm{.\;}}\)
Thể tích khối hộp chữ nhật \(ABCD \cdot A'B'C'D'\) bằng \(AB \cdot AD \cdot AA' = {a^3}\sqrt 2 \).
\({\rm{b)\;V\`i \;}}CD'//\left( {A'BD} \right){\rm{,BD}} \subset {\rm{\;}}\left( {A'BD} \right){\rm{\;}} \Rightarrow d\left( {CD',BD} \right) = d\left( {CD',\left( {A'BD} \right)} \right) = d\left( {D',\left( {A'BD} \right)} \right)\)
Vì \(D'\) cắt mặt phẳng \(\left( {A'BD} \right)\) tại trung điểm của đoạn \(AD'\) nên
\(d\left( {D',\left( {A'BD} \right)} \right) = d\left( {{A_,}\left( {A'BD} \right)} \right){\rm{.\;}}\)
Đặt \(d\left( {A,\left( {A'BD} \right)} \right) = h\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{A^{{\rm{'}}2}}}} = \frac{5}{{2{a^2}}} \Rightarrow h = \frac{{a\sqrt {10} }}{5}\).
Vậy \(d\left( {CD',BD} \right) = \frac{{a\sqrt {10} }}{5}\).
Bài 16: Alcohol
Phần hai. Địa lí khu vực và quốc gia
Chuyên đề 3: Dầu mỏ và chế biến dầu mỏ
Chuyên đề 1: Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Phần 1. Một số vấn đề về kinh tế - xã hội thế giới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11