Đề bài
Cho biết dãy số \(\left( {{u_n}} \right)\) có giới hạn hữu hạn, còn dãy số \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn. Dãy số \(\left( {{u_n} + {v_n}} \right)\) có thể có giới hạn hữu hạn không ?
Phương pháp giải - Xem chi tiết
Sử dụng phương pháp phản chứng, giả sử ngược lại, \(\left( {{u_n} + {v_n}} \right)\) có giới hạn hữu hạn suy ra điều vô lí.
Lời giải chi tiết
Dãy \(\left( {{u_n} + {v_n}} \right)\) không có giới hạn hữu hạn.
Thật vậy, giả sử ngược lại, \(\left( {{u_n} + {v_n}} \right)\) có giới hạn hữu hạn.
Khi đó, các dãy số \(\left( {{u_n} + {v_n}} \right)\) và \(\left( {{u_n}} \right)\) cùng có giới hạn hữu hạn, nên hiệu của chúngcũng là một dãy có giới hạn hữu hạn, nghĩa là dãy số có số hạng tổng quát là \({u_n} + {v_n} - {u_n} = {v_n}\) có giới hạn hữu hạn.
Điều này trái với giả thiết \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn.
Chủ đề 1. Dao động
Unit 6: On the go
Chương 3. Cacbon-Silic
Bài 7: Tiết 3. Thực hành: Tìm hiểu về Liên minh châu Âu - Tập bản đồ Địa lí 11
Tác giả - Tác phẩm Ngữ văn 11 tập 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11