Câu hỏi 42 - Mục Bài tập trang 104

1. Nội dung câu hỏi

Cho hình thang cân \(ABCD\) có \(AB//CD,\widehat D = 45^\circ \). Kẻ \(AH\) vuông góc với \(CD\) tại \(H\). Lấy điểm \(E\) thuộc cạnh \(CD\) sao cho \(HE = DH\).

a)     Chứng minh tứ giác \(ABCE\) là hình bình hành.

b)    Đường thẳng qua \(D\) song song với \(AE\) cắt \(AH\) tại \(F\). Tứ giác \(ADFE\) là hình gì? Vì sao?

c)     Tìm điều kiện của hình thang cân \(ABCD\) để \(E\) là trung điểm của \(BF\) (bỏ qua giả thiết \(\widehat D = 45^\circ \)).

 

2. Phương pháp giải 

Dựa vào dấu hiệu nhận biết của hình thang cân, hình chữ nhật hình bình hành hình thoi để chứng minh.

 

3. Lời giải chi tiết

a)     \(\Delta ADH = \Delta AEH\) (cạnh góc vuông – cạnh góc vuông), suy ra \(AD = AE\) (hai cạnh tương ứng)

\( \Rightarrrow \Delta ADE\) cân tại A. \( \Rightarrow \widehat{ADE} = widehat{AED} = 45^0\)

Mà \(ABCD\) là hình thang cân nên \widehat{ADE} = widehat{C}\)

\(\Rightarrow \widehat{C} = widehat{AED} = 45^0\). Mà hai góc này ở vị trí đồng vị suy ra AE // BC

Xét tứ giác \(ABCE\), ta có:

\(AE//BC\)

Vì \(AD = AE\) mà \(AD = BC\) nên \(AE = BC\)

Vậy tứ giác \(ABCE\) là hình bình hành.

b)    Xét tam giác \(AHE\) và \(FHD\), ta có:

\(\widehat {AEH} = \widehat {FDH}\) (so le trong); \(\widehat {AHE} = \widehat {FHD} = 90^\circ \); \(DH = HE\)

Suy ra \(\Delta AHE = \Delta DHD\) (g.c.g)

Suy ra \(AH = HF\)

Xét tứ giác \(ADEF\), ta có:

\(HD = HE;HA = HF\)

Mà \(AF \bot DE\)

Suy ra tứ giác \(ADEF\) là hình thoi.

c)     Để \(E\) là trung điểm của \(BF\) thì \(BE = FE\) và ba điểm \(B,E,F\) thẳng hàng.

Khi bỏ qua giả thiết \(\widehat {ADC} = 45^\circ \) thì ta chứng minh được tứ giác \(ADEF\) có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên \(ADEF\) là hình bình hành.

Do \(ABCE\) và \(ADEF\) đều là hình bình hành nên \(AE = BC,AE//BC\) và \(AE = DF.AE//DF\)

Suy ra \(BC = DF\) và \(BC//DF\)

Tứ giác \(BCFD\) có \(BC = DF\) và \(BC//DF\) nên \(BCFD\) là hình bình hành.

Mà \(E\) là trung điểm của \(BF\), suy ra \(E\) là trung điểm của \(CD\) hay \(EC = ED = \frac{1}{2}CD\).

Mặt khác, \(AB = EC\) (vì \(ABCE\) là hình bình hành), suy ra \(AB = \frac{1}{2}CD\)

Dễ thấy nếu hình thang cân \(ABCD\left( {AB//CD} \right)\) có \(AB = \frac{1}{2}CD\) thì \(E\) là trung điểm của \(BF\).

Vậy điều kiện của hình thang cân \(ABCD\left( {AB//CD} \right)\) để \(E\) là trung điểm của \(BF\) là \(AB = \frac{1}{2}CD\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved