Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2}\,neu\,x \ge 0\\{x^2} - 1\,neu\,x < 0\end{array} \right.\)
LG a
a) Vẽ đồ thị của hàm số f(x). Từ đó dự đoán về giới hạn của f(x) khi x → 0
Lời giải chi tiết:
Vẽ đồ thị hàm số \(y = {x^2}\) và \(y = {x^2} - 1\) trên cùng một hệ trục tọa độ.
Khi \(x \ge 0\) thì \(f\left( x \right) = {x^2}\) nên xóa nhánh đồ thị \(y = {x^2}\) bên trái trục tung đi.
Khi \(x < 0\) thì \(f\left( x \right) = {x^2} - 1\) nên xóa nhánh đồ thị \(y = {x^2} - 1\) bên phải trục tung đi.
Ta được đồ thị hàm số \(y = f\left( x \right)\).
Từ đồ thị ta thấy hàm số không có giới hạn khi \(x \to 0\).
LG b
b) Dùng định nghĩa chứng minh dự đoán trên.
Lời giải chi tiết:
TXĐ: \(D = \mathbb{R}\)
Lấy dãy \(\left\{ {{x_n}} \right\}\) và \(\left\{ {{y_n}} \right\}\) thỏa mãn \({x_n} = \dfrac{1}{n}\) và \({y_n} = - \dfrac{1}{n}\)
Dễ thấy \(\lim {x_n} = 0,\lim {y_n} = 0\).
Ta có:
Vì \({x_n} = \dfrac{1}{n} > 0\) nên \(\lim f\left( {{x_n}} \right) = \lim x_n^2 = \lim \dfrac{1}{{{n^2}}} = 0\)
Vì \({y_n} = - \dfrac{1}{n} < 0\) nên \(\lim f\left( {{y_n}} \right) = \lim \left( {y_n^2 - 1} \right)\)\( = \lim \left[ {{{\left( { - \dfrac{1}{n}} \right)}^2} - 1} \right]\) \( = \lim \left[ {\dfrac{1}{{{n^2}}} - 1} \right] = 0 - 1 = - 1\)
Do \(\lim f\left( {{x_n}} \right) \ne \lim f\left( {{y_n}} \right)\) nên không tồn tại giới hạn hàm số khi \(x \to 0\).
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 1
PHẦN 2. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Unit 9: Social issues
Chủ đề 1: Cạnh tranh, cung, cầu trong kinh tế thị trường
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11