Trả lời câu hỏi 41 - Mục câu hỏi trắc nghiệm trang 22

1. Nội dung câu hỏi

Tìm tập xác định của các hàm số sau:

a) \(y = \sqrt {1 + \sin 3x} \)                                

b) \(y = \frac{{\sin 2x}}{{\sqrt {1 - \cos x} }}\)

c) \(y = \frac{{\sqrt {1 + \cos 2x} }}{{\sin x}}\)                               

d) \(y = \frac{1}{{\sin x + \cos x}}\)

e) \(y = \frac{1}{{1 + \sin x\cos x}}\)                                      

g) \(y = \sqrt {\cos x - 1} \)


2. Phương pháp giải

a) Hàm số xác định khi \(1 + \sin 3x \ge 0\).

Xác định miền giá trị của \(1 + \sin 3x\) và kết luận.

b) Hàm số xác định khi \(\left\{ \begin{array}{l}1 - \cos x \ge 0\\\sqrt {1 - \cos x}  \ne 0\end{array} \right. \Leftrightarrow 1 - \cos x > 0\).

Chứng minh \(1 - \cos x \ge 0\), rồi chỉ ra điều kiện xác định của hàm số sẽ là \(1 - \cos x \ne 0\).

c) Hàm số xác định khi \(\left\{ \begin{array}{l}1 + \cos 2x \ge 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \sin x \ne 0\).

Tìm các giá trị của \(x\) để \(\sin x \ne 0\), và kết luận.

d) Hàm số xác định khi: \(\sin x + \cos x \ne 0\).

Áp dụng công thức \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\) để đưa điều kiện xác định của hàm số trở thành \(\sin \left( {x + \frac{\pi }{4}} \right) \ne 0\).

Do đó \(x + \frac{\pi }{4} \ne k\pi  \Leftrightarrow x \ne  - \frac{\pi }{4} + k\pi \)

e) Hàm số xác định khi \(1 + \sin x\cos x \ge 0\)

Chứng minh rằng với \(\forall x \in \mathbb{R}\) thì \(\sin x\cos x = \frac{{\sin 2x}}{2}\)

Từ đó suy ra \(1 + \sin x\cos x > 0\).

f) Hàm số xác định khi \(\cos x - 1 \ge 0 \Leftrightarrow \cos x \ge 1\).

Do \(\cos x \le 1\) với \(\forall x \in \mathbb{R}\), nên điều kiện xác định tương đương với \(\cos x = 1\).

 

3. Lời giải chi tiết

a) Hàm số xác định khi \(1 + \sin 3x \ge 0\).

Với \(\forall x \in \mathbb{R}\), ta thấy \(\sin 3x \ge  - 1 \Leftrightarrow 1 + \sin 3x \ge 0\).

Do đó, tập xác định của hàm số là \(D = \mathbb{R}\).

b) Hàm số xác định khi \(\left\{ \begin{array}{l}1 - \cos x \ge 0\\\sqrt {1 - \cos x}  \ne 0\end{array} \right. \Leftrightarrow 1 - \cos x > 0\).

Ta thấy với \(\forall x \in \mathbb{R}\), \(\cos x \le 1 \Leftrightarrow  - \cos x \ge  - 1 \Leftrightarrow 1 - \cos x \ge 0\), nên điều kiện xác định của hàm số sẽ tương đương với  \(1 - \cos x \ne 0 \Leftrightarrow \cos x \ne 1 \Leftrightarrow x \ne k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).

c) Hàm số xác định khi \(\left\{ \begin{array}{l}1 + \cos 2x \ge 0\\\sin x \ne 0\end{array} \right. \Leftrightarrow \sin x \ne 0\).

Ta có \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ {k\pi |k \in \mathbb{Z}} \right\}\).

d) Hàm số xác định khi: \(\sin x + \cos x \ne 0\).

Ta có \(\sin \left( {x + \frac{\pi }{4}} \right) = \sin x\cos \frac{\pi }{4} + \sin \frac{\pi }{4}\cos x = \frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right)\)

Do đó, điều kiện xác định của hàm số tương đương với:

 \(\frac{1}{{\sqrt 2 }}\left( {\sin x + \cos x} \right) \ne 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) \ne 0 \Leftrightarrow x + \frac{\pi }{4} \ne k\pi  \Leftrightarrow x \ne  - \frac{\pi }{4} + k\pi \) \(\left( {k \in \mathbb{Z}} \right)\)

Do đó, tập xác định của hàm số là \(D = \mathbb{R} \setminus \left\{ { - \frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\)

e) Hàm số xác định khi \(1 + \sin x\cos x \ge 0\)

Ta thấy với \(\forall x \in \mathbb{R}\) thì \(\sin 2x = 2\sin x\cos x \Leftrightarrow \sin x\cos x = \frac{{\sin 2x}}{2}\).

Do \(\sin 2x \ge  - 1 \Rightarrow \frac{{\sin 2x}}{2} \ge \frac{{ - 1}}{2} \Rightarrow 1 + \frac{{\sin 2x}}{2} \ge 1 + \frac{{ - 1}}{2} = \frac{1}{2} > 0\)

Từ đó suy ra \(1 + \sin x\cos x > 0\).

Vậy tập xác định của hàm số là \(D = \mathbb{R}\).

f) Hàm số xác định khi \(\cos x - 1 \ge 0 \Leftrightarrow \cos x \ge 1\).

Do \(\cos x \le 1\) với \(\forall x \in \mathbb{R}\), nên điều kiện xác định tương đương với \(\cos x = 1\).

\( \Leftrightarrow x = k2\pi \) \(\left( {k \in \mathbb{Z}} \right)\).

Vậy tập xác định của hàm số là \(D = \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved