Đề bài
Biết rằng dãy số \(\left( {{u_n}} \right)\) có giới hạn là \(0\). Giải thích vì sao dãy số \(\left( {{v_n}} \right)\) với \({v_n} = \left| {{u_n}} \right|\) cũng có giới hạn là \(0\). Chiều ngược lại có đúng không ?
Phương pháp giải - Xem chi tiết
Xem lại định nghĩa dãy số có giới hạn \(0\) tại đâ
Lời giải chi tiết
Vì \(\left( {{u_n}} \right)\) có giới hạn là \(0\) nên \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Mặt khác, \(\left| {{v_n}} \right| = \left| {\left| {{u_n}} \right|} \right| = \left| {{u_n}} \right|\).
Do đó, \(\left| {{v_n}} \right|\) cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Vậy, \(\left( {{v_n}} \right)\) có giới hạn là \(0\).
(Chứng minh tương tự, ta có chiều ngược lại cũng đúng).
Chủ đề 5. Giới thiệu chung về cơ khí động lực
SBT tiếng Anh 11 mới tập 2
Phần 2. Chế tạo cơ khí
CHƯƠNG 5: HIDROCACBON NO
Chương 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11