PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 4.1 phần bài tập bổ sung trang 104 SBT toán 9 tập 2

Đề bài

Cho đường tròn tâm \(O\) bán kính \(R.\) Lấy ba điểm bất kỳ \(A, B, C\) trên đường tròn \((O).\) Điểm \(E\) bất kỳ thuôc đoạn thẳng \(AB\) (và không trùng với \(A, B\)). Đường thẳng \(d\) đi qua điểm \(E\) và vuông góc với đường thẳng \(OA\) cắt đoạn thẳng \(AC\) tại điểm \(F.\) Chứng minh \(\widehat {BCF} + \widehat {BEF} = {180^o}.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.

+) Nếu một đường thẳng cùng vuông góc với hai đường thẳng thì hai đường thẳng đó song song với nhau.

+) Trong một đường tròn, góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

+) Nếu một đường thẳng cắt hai đường thẳng song song thì tạo ra các cặp góc so le trong bằng nhau.

+) Tổng các góc trong một tứ giác bằng \(360^o.\)

Lời giải chi tiết

 

Kẻ tiếp tuyến \(At\) của đường tròn \((O)\) 

Suy ra: \(At  \bot OA\) (tính chất tiếp tuyến)

Mà \(EF \bot OA\) \((gt)\)

Do đó: \(At // EF\)

Nên \(\widehat {EFA} = \widehat {CAt}\) (so le trong)

Lại có: \(\widehat {CBA} = \widehat {CAt}\) (hệ quả góc giữa tia tiếp tuyến và dây cung)

Suy ra: \(\widehat {EFA} = \widehat {CBA}\)  hay \(\widehat {EFA} = \widehat {CBE}\)

Mà \(\widehat {EFA} + \widehat {EFC} = {180^o}\) (hai góc kề bù)

Nên \(\widehat {CBE} + \widehat {EFC} =180^o \;\;   (1)\)

Trong tứ giác \(BCFE\) ta có:

\(\widehat{BCF} +\widehat{BEF} + \widehat{CBE} +\widehat{CFE} =360^o\) (tổng các góc trong tứ giác)\( (2)\)

Từ \((1)\) và \((2)\) suy ra: \(\widehat {BCF} + \widehat {BEF} = {180^o}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved