PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 40 trang 84 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC,\) các đường trung tuyến \(BD,\) \(CE.\) Gọi \(M, N\) theo thứ tự là trung điểm của \(BE, CD. \) Gọi \(I, K\) theo thứ tự là giao điểm của \(MN\) với \(BD, CE.\) Chứng minh rằng \(MI = IK = KN.\)

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa, tính chất đường trung bình của tam giác và hình thang:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

+) Đường trung bình của hình thang thì song song với hai cạnh đáy và bằng nửa tổng hai đáy.

+) Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

Lời giải chi tiết

 

Trong tam giác \(ABC\) ta có:

\(E\) là trung điểm của cạnh \(AB\)

\(D\) là trung điểm của cạnh \(AC\)

Nên \(ED\) là đường trung bình của \(∆ ABC\)

\( \Rightarrow ED//BC\) và \(ED = \displaystyle {1 \over 2}BC\) (tính chất đường trung bình của tam giác)

Vì \(ED//BC\) nên tứ giác \(BCDE\) là hình thang. 

Trong hình thang \(BCDE,\) ta có: \(BC // DE\)

\(M\) là trung điểm cạnh bên \(BE\)

\(N\) là trung điểm cạnh bên \(CD\)

Nên \(MN\) là đường trung bình hình thang \(BCDE ⇒ MN // DE\)

\(MN =\displaystyle  {{DE + BC} \over 2}\)\( = \displaystyle { \displaystyle {{\displaystyle {BC} \over 2} + BC} \over 2} = {{3BC} \over 4}\) (tính chất đường trung bình hình thang)

Trong tam giác \(BED\) ta có:

\(M\) là trung điểm của \(BE\)

\(MI // DE\)

Suy ra: \(MI\) là đường trung bình của \(∆ BED\)

\( \Rightarrow MI = \displaystyle  {1 \over 2}DE \)\(= \displaystyle {1 \over 2}.{1 \over 2}BC= {1 \over 4}BC\) (tính chất đường trung bình tam giác)

Trong tam giác \(CED\) ta có:

\(N\) là trung điểm của \(CD\)

\(NK // DE\)

Suy ra: \(NK\) là đường trung bình của \(∆ CED\)

\( \Rightarrow NK = \displaystyle {1 \over 2}DE \)\( =\displaystyle {1 \over 2}.{1 \over 2}BC= {1 \over 4}BC\) (tính chất đường trung bình tam giác)

\(\eqalign{
& IK = MN - \left( {MI + NK} \right) \cr 
& = {3 \over 4}BC - \left( {{1 \over 4}BC + {1 \over 4}BC} \right) = {1 \over 4}BC \cr 
& \Rightarrow MI = IK = KN = {1 \over 4}BC \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved