1. Nội dung câu hỏi
Cho \(\left( {{u_n}} \right)\) là cấp số nhân có \({u_1} + {u_5} = 51\) và \({u_2} + {u_6} = 102\)
a) Tính \({u_{10}}\).
b) Số 192 là số hạng thứ mấy của cấp số nhân trên?
c) Số 9216 có là số hạng nào của cấp số nhân trên không?
2. Phương pháp giải
a) Ta có \({u_2} + {u_6} = {u_1}q + {u_5}q = q\left( {{u_1} + {u_5}} \right)\), từ đó suy ra \(q = 2\) và \({u_1} = 3\). Từ đó tính được \({u_{10}}\).
b) Gọi \(k\) là vị trí của số 192 trong cấp số nhân trên. Ta cần tìm \(k\) để \(192 = {u_1}.{q^{k - 1}}\). Giải phương trình ta được \(k = 7\).
c) Giả sử 9216 là số thứ \(n\) của cấp số nhân \(\left( {{u_n}} \right)\). Suy ra \(9216 = {u_1}.{q^n}\).
Ta suy ra \({2^{n - 1}} = 3072\). Điều này vô lí vì 3072 chia hết cho 3, và không có số nguyên dương \(n\) nào để \({2^{n - 1}}\) chia hết cho 3.
3. Lời giải chi tiết
a) Ta có hệ phương trình:
\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\{u_1}q\left( {1 + {q^4}} \right) = 102\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\51q = 102\end{array} \right.\)
\(\left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\q = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {2^4}} \right) = 51\\q = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 3\\q = 2\end{array} \right.\)
Vậy \({u_1} = 3\), \(q = 2\). Suy ra \({u_{10}} = {u_1}{q^9} = {3.2^9} = 1536\).
b) Gọi \(k\) là vị trí của số 192 trong cấp số nhân trên. Ta có \({u_k} = {u_1}.{q^{k - 1}}\).
Ta cần tìm \(k\) để \(192 = {u_1}.{q^{k - 1}}\).
Do \(192 = {3.2^{k - 1}} \Rightarrow {2^{k - 1}} = 64 \Rightarrow k - 1 = 6 \Rightarrow k = 7\).
Vậy 192 là số hạng thứ 7 của cấp số nhân trên.
c) Giả sử 9216 là số thứ \(n\) của cấp số nhân \(\left( {{u_n}} \right)\). Suy ra \(9216 = {u_n} = {u_1}.{q^{n - 1}}\).
\( \Rightarrow {3.2^{n - 1}} = 9216 \Rightarrow {2^{n - 1}} = 3072\).
Vì 3072 chia hết cho 3, và với \(n\) nguyên dương thì \({2^{n - 1}}\) không chia hết cho 3.
Suy ra không tồn tại \(n\) thoả mãn.
Vậy 9216 không là số hạng của cấp số nhân trên.
Chủ đề 2. Khám phá bản thân
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VII - Hóa học 11
Test Yourself 3
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Đề minh họa số 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11