PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 40 trang 162 SBT toán 9 tập 1

Đề bài

Cho đường tròn \((O),\) bán kính \(OA,\) dây \(CD\) là đường trung trực của \(OA.\)

\(a)\) Tứ giác \(OCAD\) là hình gì \(?\) Vì sao\(?\)

\(b)\) Kẻ tiếp tuyến đường tròn tại \(C,\) tiếp tuyến này cắt đường thẳng \(OA\) tại \(I.\) Tính độ dài \(CI\) biết \(OA = R.\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:  

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

+) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

+) Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi. 

+) Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.

Lời giải chi tiết

 

\(a)\) Gọi \(H\) là giao điểm của \(OA\) và \(CD\)

Vì \(CD\) là đường trung trực của \(OA\) nên:

    \(CD ⊥ OA\) và \(HA = HO\)

Xét đường tròn (O) có \(CD ⊥ OA\) tại H nên H là trung điểm của dây CD hay \(HC = HD\) (đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy)

Vì tứ giác \(ACOD\) có hai đường chéo CD và OA cắt nhau tại trung điểm H của mỗi đường nên nó là hình bình hành.

Đồng thời \(CD ⊥ OA\) nên \(ACOD\) là hình thoi.

\(b)\) Vì \(ACOD\) là hình thoi nên \(AC = OC\)

Mà \(OC = OA ( = R)\) nên \(OA=OC=AC\), suy ra tam giác \(OAC\) đều.

Suy ra: \(\widehat {COA} = 60^\circ \) hay \(\widehat {COI} = 60^\circ \)

Mà \(CI ⊥ OC\) (tính chất tiếp tuyến)

Trong tam giác vuông \(OCI,\) ta có:

\(CI = OC.\tan\widehat {COI} \)\(= R.\tan60^\circ  = R\sqrt 3 \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved