Toán 7 tập 2 - Chân trời sáng tạo

Giải Bài 4 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo

Đề bài

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm N sao cho BA = BN. Kẻ \(BE \bot AN\)(E ∈ AN).

a) Chứng minh rằng BE là tia phân giác của giác ABN.

b) Kẻ đường cao AH của tam giác ABC. Gọi K là giao điểm của BH với CE. Chứng minh rằng NK // CA.

c) Đường thẳng BK cắt AC tại F. Gọi G là giao điểm của đường thẳng AB với NF. Chứng minh rằng tam giác GBC cân. 

 

 

Phương pháp giải - Xem chi tiết

a) Ta chứng minh \(\widehat {ABE} = \widehat {NBE}\) bằng cách chứng minh 2 tam giác BAF và BNF bằng nhau .

b) Ta chứng minh NK song song với CA do có 2 góc so le trong bằng nhau

c) Ta chứng minh góc BGC bằng góc BCG

 

 

Lời giải chi tiết

a)      Xét \(\Delta BAE\) và \(\Delta BNE\) có :

BA = BN (giả thiết)

BF cạnh chung

\(\widehat {BEA} = \widehat {BEN}\)

\( \Rightarrow \Delta BAE = \Delta BNE\)(cạnh huyền-cạnh góc vuông)

\( \Rightarrow \widehat {ABF} = \widehat {NBF}\)(góc tương ứng)

\( \Rightarrow \) BE là phân giác của góc ABN

b)      Vì K là giao của 2 đường cao \( \Rightarrow \)K là trực tâm tam giác ABN

\( \Rightarrow \) KN vuông góc với AB(1)

Vì CA vuông góc với AB ( tam giác ABC vuông tại A)(2)

Từ (1) và (2) \( \Rightarrow \) KN song song với CA (quan hệ cùng vuông góc với 1 đường)

c)      Ta có \(\Delta BAF = \Delta BNF(c - g - c)\)do có :

\(\widehat {BEA} = \widehat {BEN}\)

BF cạnh chung

BN = BA

\( \Rightarrow \widehat {BNF} = \widehat {BAF}\) (2 góc tương ứng).

Mà \(\widehat {BAF} = 90^\circ \)

\( \Rightarrow \widehat {BNF} = \widehat {BAF} = {90^o}\)

\( \Rightarrow GN \bot BC\)

Ta có CA và GN là 2 đường cao của tam giác GBC

\( \Rightarrow \)F là trực tâm của tam giác GBC

\( \Rightarrow \)BF vuông góc với GC tại P

Xét \(\Delta BGP\) và \(\Delta BCP\) ta có :

BP cạnh chung

\(\widehat {BPC} = \widehat {BPG} = {90^o}\)

\(\widehat {PBC} = \widehat {PBG}\)

\( \Rightarrow \Delta BGP = \Delta BCP(c - g - c)\)

\( \Rightarrow BC = BG\)(2 cạnh tương ứng)

\( \Rightarrow \)Tam giác GBC cân tại B 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved