Đề bài
Cho \(\Delta ABC\) có \(\widehat A = 99^\circ ,b = 6,c = 10\). Tính:
a) Diện tích tam giác ABC
b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC
Lời giải chi tiết
a) Áp dụng định lí sin vào tam giác ABC ta có:
\({S_{ABC}} = \frac{1}{2}bc\sin A = \frac{1}{2}.6.10.\sin 99^\circ \simeq 29,63\) (đvdt)
b) Áp dụng định lí côsin ta tính được:
\(a = \sqrt {{b^2} + {c^2} - 2bc\cos A} = \sqrt {{6^2} + {{10}^2} - 2.6.10\cos 99^\circ } \simeq 12,44\)
Bán kính đường tròn ngoại tiếp tam giác ABC là:
\(R = \frac{{abc}}{{4S}} \simeq \frac{{12,44.6.10}}{{4.29,63}} \simeq 6,25\)
Bán kính đường tròn nội tiếp tam giác là:
\(r = \frac{S}{p} = \frac{{29,63}}{{\frac{{\left( {12,44 + 6 + 10} \right)}}{2}}} \simeq 2,084\)
CHƯƠNG III. LIÊN KẾT HÓA HỌC
Chuyên đề 2: Hóa học trong việc phòng chống cháy nổ
Unit 7: Tourism
Chương 3. Hàm số bậc hai và đồ thị
Chương 5. Một số nền văn minh trên đất nước Việt Nam (trước năm 1858)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10