Đề bài
Trong mặt phẳng tọa độ Oxy, cho hypebol (H): \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\). Lập phương trình chính tắc của hypebol (E), biết rằng (E) có các tiêu điểm là tiêu điểm của (H) và các đỉnh của hình chữ nhật cơ sở của (H) cũng nằm trên (E)
Phương pháp giải - Xem chi tiết
Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)
+ Hình chữ nhật cơ sở có 4 đỉnh \(P\left( { - a;b} \right),Q\left( {a;b} \right),R\left( {a; - b} \right),S - \left( {a;b} \right).\)
Cho hypebol (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)
+ 4 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)
Lời giải chi tiết
Hypebol (H) có \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}} = 10\) nên ta có một đỉnh của hình chữ nhật cơ sở là \(M\left( {8;6} \right)\)
Phương trình hypebol (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)
+ Ta có: (E) có các tiêu điểm là tiêu điểm của (H) nên \(c = 10 \Rightarrow {a^2} - {b^2} = {c^2} = 100\)
+ Các đỉnh của hình chữ nhật cơ sở của (H) cũng nằm trên (E) \( \Rightarrow M\left( {8;6} \right) \in \left( E \right) \Rightarrow \frac{{{8^2}}}{{{a^2}}} + \frac{{{6^2}}}{{{b^2}}} = 1\)
Ta có: \({a^2} - {b^2} = 100 \Rightarrow {a^2} = {b^2} + 100\)\( \Rightarrow \frac{{{8^2}}}{{{b^2} + 100}} + \frac{{{6^2}}}{{{b^2}}} = 1 \Rightarrow 64{b^2} + 36\left( {{b^2} + 100} \right) = {b^4} + 100{b^2}\)
\( \Rightarrow {b^4} = 36.100 \Rightarrow {b^2} = 6.10 = 60 \Rightarrow {a^2} = 60 + 100 = 160\)
Khi đó phương trình chính tắc của hypebol là: \(\frac{{{x^2}}}{{160}} + \frac{{{y^2}}}{{60}} = 1\)
Unit 6: Community Life
Soạn Văn 10 Cánh Diều tập 1 - siêu ngắn
Unit 6: Community Life
Chương 1. Cấu tạo nguyên tử
Lời má năm xưa
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10