Chuyên đề 3: Ba đường conic và ứng dụng

Giải bài 4 trang 56 Chuyên đề học tập Toán 10 – Cánh diều

Đề bài

Trong mặt phẳng tọa độ Oxy, cho hypebol (H): \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\). Lập phương trình chính tắc của hypebol (E), biết rằng (E) có các tiêu điểm là tiêu điểm của (H) và các đỉnh của hình chữ nhật cơ sở của (H) cũng nằm trên (E)

Phương pháp giải - Xem chi tiết

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Hình chữ nhật cơ sở có 4 đỉnh \(P\left( { - a;b} \right),Q\left( {a;b} \right),R\left( {a; - b} \right),S - \left( {a;b} \right).\)

Cho hypebol (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ 4 đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right).\)

Lời giải chi tiết

Hypebol (H) có \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = 10\) nên ta có một đỉnh của hình chữ nhật cơ sở là \(M\left( {8;6} \right)\)

Phương trình hypebol (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

+ Ta có: (E) có các tiêu điểm là tiêu điểm của (H) nên \(c = 10 \Rightarrow {a^2} - {b^2} = {c^2} = 100\)

+ Các đỉnh của hình chữ nhật cơ sở của (H) cũng nằm trên (E) \( \Rightarrow M\left( {8;6} \right) \in \left( E \right) \Rightarrow \frac{{{8^2}}}{{{a^2}}} + \frac{{{6^2}}}{{{b^2}}} = 1\)

Ta có: \({a^2} - {b^2} = 100 \Rightarrow {a^2} = {b^2} + 100\)\( \Rightarrow \frac{{{8^2}}}{{{b^2} + 100}} + \frac{{{6^2}}}{{{b^2}}} = 1 \Rightarrow 64{b^2} + 36\left( {{b^2} + 100} \right) = {b^4} + 100{b^2}\)

\( \Rightarrow {b^4} = 36.100 \Rightarrow {b^2} = 6.10 = 60 \Rightarrow {a^2} = 60 + 100 = 160\)

Khi đó phương trình chính tắc của hypebol là: \(\frac{{{x^2}}}{{160}} + \frac{{{y^2}}}{{60}} = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved