Đề bài
Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau:
(P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0
Phương pháp giải - Xem chi tiết
Đường thẳng \(d\) song song với hai mặt phẳng cắt nhau thì \(\overrightarrow {{u_d}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right]\)
Lời giải chi tiết
Do (P) và (Q) cắt nhau nên \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \ne \overrightarrow 0 \).
Đường thẳng d đi qua M0 và có vecto chỉ phương \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \) \(= \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}B\\{B'}\end{array}}&{\begin{array}{*{20}{c}}C\\{C'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}C\\{C'}\end{array}}&{\begin{array}{*{20}{c}}A\\{A'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}A\\{A'}\end{array}}&{\begin{array}{*{20}{c}}B\\{B'}\end{array}}\end{array}} \right|} \right)\)
\( = \left( {BC' - B'C;CA' - C'A;AB' - A'B} \right)\)
Do đó phương trình tham số của d là:
\(\left\{ \begin{array}{l}
x = {x_0} + \left( {BC' - B'C} \right)t\\
y = {y_0} + \left( {CA' - C'A} \right)t\\
z = {z_0} + \left( {AB' - A'B} \right)t
\end{array} \right.\)
Đặc biệt phương trình trên cũng là phương trình giao tuyến của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 với M0 là điểm chung của (P) và (Q).
Chương 8. Nhận biết một số chất vô cơ
PHẦN SÁU. TIẾN HÓA
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 12
Bài 39. Vấn đề khai thác lãnh thổ theo chiều sâu ở Đông Nam Bộ
Đề kiểm tra 15 phút