Bài 3.58 trang 133 SBT hình học 12

Đề bài

Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau:

(P) Ax + By + Cz + D = 0  và (Q): A’x + B’y + C’z + D’ = 0

Phương pháp giải - Xem chi tiết

Đường thẳng \(d\) song song với hai mặt phẳng cắt nhau thì \(\overrightarrow {{u_d}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right]\)

Lời giải chi tiết

Do (P) và (Q) cắt nhau nên  \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \ne \overrightarrow 0 \).

Đường thẳng d đi qua M0 và có vecto chỉ phương \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \) \(= \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}B\\{B'}\end{array}}&{\begin{array}{*{20}{c}}C\\{C'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}C\\{C'}\end{array}}&{\begin{array}{*{20}{c}}A\\{A'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}A\\{A'}\end{array}}&{\begin{array}{*{20}{c}}B\\{B'}\end{array}}\end{array}} \right|} \right)\)

\( = \left( {BC' - B'C;CA' - C'A;AB' - A'B} \right)\)

Do đó phương trình tham số của d là: 

\(\left\{ \begin{array}{l}
x = {x_0} + \left( {BC' - B'C} \right)t\\
y = {y_0} + \left( {CA' - C'A} \right)t\\
z = {z_0} + \left( {AB' - A'B} \right)t
\end{array} \right.\)

Đặc biệt phương trình trên cũng là phương trình giao tuyến của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0   và  (Q): A’x + B’y + C’z + D’ = 0  với M0 là điểm chung của (P) và (Q).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved