Đề bài
Có thể có một tam giác vuông mà số đo các cạnh của nó lập thành một cấp số cộng không ?
Phương pháp giải - Xem chi tiết
Gọi số đo ba cạnh của tam giác vuông là \(x - d,x,x + d.\)
Sử dụng định lí py-ta-go tìm ba cạnh và kết luận.
Lời giải chi tiết
Gọi số đo ba cạnh của tam giác vuông là \(x - d,x,x + d.\)
ĐK: \(x > 0\).
Dễ thấy cạnh lớn nhất là \(x+d\) nên là cạnh huyển.
Theo Pitago ta có \({\left( {x + d} \right)^2} = {\left( {x - d} \right)^2} + {x^2}\)
\(\begin{array}{l}
\Leftrightarrow {x^2} + 2xd + {d^2} \\= {x^2} - 2xd + {d^2} + {x^2}\\
\Leftrightarrow {x^2} - 4xd = 0\\
\Leftrightarrow x\left( {x - 4d} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\left( {loai} \right)\\
x = 4d
\end{array} \right.
\end{array}\)
Như vậy có thể có tam giác vuông thoả mãn đầu bài, các cạnh của nó là \(3d,4d,5d.\)
Đặc biệt, nếu \(d = 1\) thì tam giác vuông có các cạnh là \(3, 4, 5\) (tam giác Ai Cập).
Unit 2: The generation gap
Chương 4. Sinh sản ở sinh vật
SOẠN VĂN 11 TẬP 1
SBT Ngữ văn 11 - Cánh Diều tập 1
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương IV - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11