Đề bài
Cho tam giác \(ABC\) có \(AB = 1,\,\,BC = 2,\,\,\widehat {ABC} = {60^ \circ }.\) Tính độ dài cạnh và số đo các góc còn lại của tam giác
Phương pháp giải - Xem chi tiết
- Áp dụng định lý cosin để tính cạnh \(AC\):
\(A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\)
- Áp dụng định lý sin để tính các \(\widehat A,\,\,\widehat C\): \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}.\)
Lời giải chi tiết
Độ dài cạnh \(AC\) là:
Áp dụng định lý cosin, ta có:
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC}\\ \Rightarrow \,\,A{C^2} = 1 + 4 - 2.1.2.\cos {60^ \circ } = 3\\ \Rightarrow \,\,AC = \sqrt 3 .\end{array}\)
Áp dụng định lý sin, ta có:
\(\left\{ {\begin{array}{*{20}{c}}{\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}}}\\{\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\sin A = \frac{{BC.\sin B}}{{AC}} = \frac{{2.\sin {{60}^ \circ }}}{{\sqrt 3 }} = 1}\\{\sin C = \frac{{AB.\sin B}}{{AC}} = \frac{{1.\sin {{60}^ \circ }}}{{\sqrt 3 }} = \frac{1}{2}}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A = {{90}^ \circ }}\\{\widehat C = {{30}^ \circ }}\end{array}} \right.} \right.} \right.\)
Unit 9: Travel and Tourism
Đề kiểm tra 15 phút học kì I
Chủ đề 6: Hành động vì môi trường
Unit 1: Family Life
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 10
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10