1. Nội dung câu hỏi
Gọi H là giao của ba đường cao AI, BJ, CK của tam giác nhọn ABC. Dùng công thức tính diện tích tam giác để chứng minh: \(\frac{{HI}}{{AI}} + \frac{{HJ}}{{BJ}} + \frac{{HK}}{{CK}} = 1\)
Hỏi khi góc A của tam giác ABC là góc tù thì công thức đó thay đổi thế nào?
2. Phương pháp giải
Sử dụng kiến thức về diện tích tam giác để chứng minh: Diện tích tam giác bằng nửa tích của đáy và chiều cao tương ứng với đáy đó.
3. Lời giải chi tiết
+ Trường hợp tam giác ABC nhọn:
Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}IA.BC\)
Diện tích tam giác HBC là: \({S_{HBC}} = \frac{1}{2}HI.BC\)
Do đó, \(\frac{{{S_{HBC}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}HI.BC}}{{\frac{1}{2}AI.BC}} = \frac{{HI}}{{AI}}\)
Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}BJ.AC\)
Diện tích tam giác HAC là: \({S_{HAC}} = \frac{1}{2}HJ.AC\)
Do đó, \(\frac{{{S_{HAC}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}HJ.AC}}{{\frac{1}{2}BJ.AC}} = \frac{{HJ}}{{BJ}}\)
Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}CK.AB\)
Diện tích tam giác HAB là: \({S_{HAB}} = \frac{1}{2}HK.AB\)
Do đó, \(\frac{{{S_{HAB}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}HK.AB}}{{\frac{1}{2}CK.AB}} = \frac{{HK}}{{CK}}\)
Vậy \(\frac{{HI}}{{AI}} + \frac{{HJ}}{{BJ}} + \frac{{HK}}{{CK}} = \frac{{{S_{HBC}}}}{{{S_{ABC}}}} + \frac{{{S_{HAC}}}}{{{S_{ABC}}}} + \frac{{{S_{HAB}}}}{{{S_{ABC}}}} = 1\)
Trường hợp góc A tù, H nằm trong góc đối đỉnh với góc BAC, ta có: \({S_{ABC}} = {S_{HBC}} - {S_{HAB}} - {S_{HAC}}\)
Do đó, \(\frac{{HI}}{{AI}} - \frac{{HJ}}{{BJ}} - \frac{{HK}}{{CK}} = 1\)
Bài 2. Khí hậu châu Á
Tải 10 đề thi học kì 1 Văn 8
Văn thuyết minh
Bài 20
Unit 7: Environmental protection
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8