HÌNH HỌC SBT - TOÁN 11

Bài 3.27 trang 151 SBT hình học 11

Đề bài

a) Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Chứng minh rằng đường thẳng AC’ vuông góc với mặt phẳng (A’BD) và mặt phẳng (ACC’A’) vuông góc với mặt phẳng (A’BD).

b) Tính đường chéo AC’ của hình lập phương đã cho.

Phương pháp giải - Xem chi tiết

Sử dụng lý thuyết: "Hai mặt phẳng vuông góc với nhau, nếu có đường thẳng nằm trong mặt phẳng này mà vuông góc với giao tuyến thì đường thẳng đó sẽ vuông góc với mặt phẳng còn lại".

Lời giải chi tiết

 

a) Ta có \(AB = A{\rm{D}} = AA' = a\)

và \(C'B = C'D = C'A' = a\sqrt 2 \)

Vì hai điểm A và C’ cách đều ba đỉnh của tam giác A’BD nên A và C’ thuộc trục đường tròn ngoại tiếp tam giác BDA’ . Vậy \(AC' \bot \left( {B{\rm{D}}A'} \right)\).

Mặt khác vì mặt phẳng (ACC’A’) chứa đường thẳng AC’ mà \(AC' \bot \left( {B{\rm{D}}A'} \right)\) nên ta suy ra mặt phẳng (ACC’A’) vuông góc với mặt phẳng  (BDA’)

b) Ta có ACC’ là tam giác vuông có cạnh \(AC = a\sqrt 2 \) và CC’ = a

Vậy \(AC{'^2} = A{C^2} + CC{'^2} \Rightarrow AC{'^2} = 2{{\rm{a}}^2} + {a^2} = 3{{\rm{a}}^2}\)

Vậy \(AC' = a\sqrt 3 \).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved