SBT Toán 8 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 3.22 - Mục Bài tập trang 39

1. Nội dung câu hỏi

1. Sử dụng tính chất tổng các góc của một tam giác bằng \({180^0}\) để chứng minh:

a) Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

b) Tam giác ABC có đường trung tuyến AM bằng nửa BC thì tam giác vuông tại A.

2. Sử dụng tính chất hai đường chéo của hình chữ nhật bằng nhau để chứng minh a), b) của ý 1.

 

2. Phương pháp giải

2a: Sử dụng kiến thức về tính chất hình chữ nhật để chứng minh: Hình chữ nhật có hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

2b: Sử dụng kiến thức về dấu hiệu nhận biết hình chữ nhật để chứng minh: Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

 

3. Lời giải chi tiết

1.

a) Giả sử tam giác ABC vuông tại A.

Do B là góc nhọn, lấy điểm M thuộc BC sao cho \(\widehat {BAM} = \widehat {ABM}\) nên tam giác ABM cân tại M. Do đó, \(AM = MB\)

Vì \(\widehat {BAM} + \widehat {MAC} = \widehat {ABM} + \widehat {ACM} = {90^0}\) nên \(\widehat {MAC} = \widehat {ACM}\), do đó, tam giác AMC cân tại M. Do đó, \(MA = MC.\)

Vậy \(MA = MB = MC = \frac{1}{2}BC\)

b) Ngược lại, nếu M thuộc BC sao cho \(MA = MB = MC = \frac{1}{2}BC\) thì tam giác MAB cân tại M, tam giác MAC cân tại M.

Suy ra, \(\widehat {MAB} = \widehat B,\widehat {MAC} = \widehat C\)

Ta có: \(\widehat {BAC} = \widehat {MAC} + \widehat {MAB}\)

Nên \(\widehat {BAC} = \widehat B + \widehat C\), mà \(\widehat {BAC} + \widehat B + \widehat C = {180^0}\) nên \(\widehat {BAC} = {90^0}\)

Do đó, tam giác ABC vuông tại A.

2.

Gọi M là trung điểm của BC, lấy điểm P sao cho M là trung điểm của AP thì tứ giác ABPC là hình bình hành.

a) Nếu tam giác ABC vuông tại A thì hình bình hành ABPC có \(\widehat {BAC} = {90^0}\) nên ABPC là hình chữ nhật. Do hai đường chéo AP, BC bằng nhau nên \(MA = MB = MC = MP\)

b) Nếu M thuộc BC sao cho \(MA = MB = MC = \frac{1}{2}BC\) thì suy ra \(BC = AP\). Khi đó, hình bình hành ABPC có hai đường chéo bằng nhau nên ABPC là hình chữ nhật. Do đó, \(\widehat {CAB} = {90^0}\)

Vậy tam giác ABC vuông tại A.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved