PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 32 trang 105 SBT toán 9 tập 2

Đề bài

Trên đường tròn \((O; R)\) vẽ ba dây liên tiếp bằng nhau \(AB, BC, CD,\) mỗi dây có độ dài nhỏ hơn \(R.\) Các đường thẳng \(AB\) và \(CD\) cắt nhau tại \(I,\) các tiếp tuyến của đường tròn tại \(B, D\) cắt nhau tại \(K.\)

\(a)\) Chứng minh \(\widehat {BIC} = \widehat {BKD}\)

\(b)\) Chứng minh \(BC\) là tia phân giác của \(\widehat {KBD}.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.

+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)

+) Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.

Lời giải chi tiết

 

\(a)\) \(\overparen{AB} = \overparen{BC} = \overparen{CD}\)  \((gt)\) \(                  (1)\)

Trong đường tròn \((O)\) ta có \(\widehat {BKD}\) là góc có đỉnh ở ngoài đường tròn.

\( \Rightarrow \widehat {BKD} = \displaystyle {1 \over 2} (sđ \overparen{BAD} \)\(- sđ \overparen{BCD}\))

\(=\displaystyle {1 \over 2} (sđ \overparen{AB} + sđ \overparen{AmD} - sđ \overparen{BC}\)\( - sđ \overparen{CD}\)) \(         (2)\)

Từ \((1)\) và \((2)\) \( \Rightarrow \widehat {BKD} = \displaystyle {1 \over 2} (sđ \overparen{AmD} \)\(- sđ \overparen{BC}\))\(       (3)\)

Trong đường tròn \((O)\) ta có \(\widehat {BIC}\) là góc có đỉnh ở ngoài đường tròn.  

\( \Rightarrow \widehat {BIC} =\displaystyle  {1 \over 2}\) (sđ \(\overparen{AmD}\) - sđ \(\overparen{BC}\)) \( (4)\)

Từ \((3)\) và \((4)\) suy ra: \(\widehat {BIC} = \widehat {BKD}\)

\(b)\) Xét đường tròn \((O)\) ta có:

+) \(\widehat {KBC} = \displaystyle {1 \over 2}\)sđ \(\overparen{BC}\) (tính chất góc tạo bởi tia tiếp tuyến và dây cung)   \( (5)\)

+) \(\widehat {CBD} = \displaystyle {1 \over 2} sđ \overparen{CD}\) (tính chất góc nội tiếp)        \( (6)\)

Từ \((1),\) \((5)\) và \((6)\) suy ra: \(\widehat {KBC} = \widehat {CBD}\). Vậy \(BC \) là tia phân giác của \(\widehat {KBD}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved