Câu hỏi 32 - Mục Bài tập trang 102

1. Nội dung câu hỏi

Cho hình chữ nhật \(ABCD\) có hai cạnh kề không bằng nhau. Tia phân giác của các góc \(A\) và \(B\) cắt nhau tại \(E\). Tia phân giác của các góc \(C\) và \(D\) cắt nhau tại \(F\). Gọi \(G\) là giao điểm của \(AE\) và \(DF\), \(H\) là giao điểm của \(BE\) và \(CF\). Chứng minh:

a)     \(GH//CD\)

b)    Tứ giác \(GFHE\) là hình vuông

 

2. Phương pháp giải 

Dựa vào dấu hiệu nhận biết của hình vuông:

-         Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông

-         Hình chữ nhật có hai đường chéo là đường phân giác của một góc là hình vuông

 

3. Lời giải chi tiết

a)     Do \(ABCD\) là hình chữ nhật nên \(\widehat {DAB} = \widehat {ABC} = \widehat {BCD} = \widehat {CDA} = 90^\circ \)

Mà \(AE,BE,CF,DF\) lần lượt là các tia phân giác của các góc \(DAB,ABC,BCD,CDA\) suy ra \(\widehat {DAE} = \widehat {EAB} = \widehat {ABE} = \widehat {EBC} = \widehat {BCF} = \widehat {FCD} = \widehat {CDF} = \widehat {FDA} = 45^\circ \)

Do đó, các tam giác \(EAB,FCD,GAD,HBC\) đều là tam giác vuông cân.

\(\Delta GAD = \Delta HBC\) (g.c.g). Suy ra \(GD = HC\). Mà \(FD = FC\), suy ra \(FG = FH\).

Do đó, tam giác \(FGH\) vuông cân tại \(F\). Suy ra \(\widehat {FGH} = 45^\circ \).

Ta có: \(\widehat {FGH} = \widehat {CDF} = 45^\circ \) và \(\widehat {FGH},\widehat {CDF}\) nằm ở vị trí đồng vị nên \(GH//CD\).

b)    \(\widehat {EGF} = \widehat {AGD} = 90^\circ \) (hai góc đối đỉnh)

Tứ giác \(GFHE\) là hình chữ nhật.

Hình chữ nhật \(GFHE\) có \(FG = FH\) nên \(GFHE\) là hình vuông.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved