1. Nội dung câu hỏi
Cho tam giác ABC không vuông tại A. Dựng bên ngoài tam giác đó hai tam giác ABD, ACE vuông cân tại đỉnh A rồi dựng hình bình hành AEID.
a) Chứng minh hai tam giác ABC và DAI bằng nhau.
b) Chứng minh đường thẳng AI vuông góc với BC.
c) Chứng minh đường thẳng BE vuông góc với đường thẳng CD.
d) Gọi K là trung điểm của BD, chứng minh \(KC = KI\) và KC vuông góc với KI
(Gợi ý: Chứng minh hai tam giác AKI và BKC bằng nhau).
2. Phương pháp giải
Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có các cạnh đối bằng nhau và song song.
3. Lời giải chi tiết
a) Vì AEID là hình bình hành nên \(\widehat {ADI} + \widehat {DAE} = {180^0}\) (hai góc kề một cạnh của hình bình hành)
Ta có: \(\widehat {DAE} + \widehat {DAB} + \widehat {BAC} + \widehat {CAE} = {360^0}\)
Mà tam giác ABD vuông tại A, tam giác ACE vuông tại A nên \(\widehat {BAC} + \widehat {DAE} = {360^0} - {90^0} - {90^0} = {180^0}\)
Do đó, \(\widehat {ADI} = \widehat {BAC}\)
Tam giác ABD vuông cân tại A nên \(AB = AD\)
Tam giác ACE vuông cân tại A nên \(AC = AE\)
Vì AEID là hình bình hành nên \(AE = DI\), do đó \(DI = AC\)
Tam giác ADI và tam giác BAC có:
\(AB = AD\)(cmt), \(\widehat {ADI} = \widehat {BAC}\) (cmt), \(DI = AC\) (cmt)
Do đó, \(\Delta ADI = \Delta BAC\left( {c - g - c} \right)\)
b) Giả sử AI cắt BC ở H.
Ta có: \(\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = {180^0}\), mà \(\widehat {DAB} = {90^0}\) (do tam giác DAB vuông cân tại A). Suy ra \(\widehat {DAI} + \widehat {BAH} = {90^0}\)
Mà \(\widehat {DAI} = \widehat {ABC}\) (do \(\Delta ADI = \Delta BAC\)) nên \(\widehat {ABH} + \widehat {BAH} = {90^0}\)
Tam giác ABH có: \(\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = {180^0}\) nên \(\widehat {AHB} = {180^0} - \left( {\widehat {ABH} + \widehat {BAH}} \right) = {90^0}\)
Do đó, AI vuông góc với BC tại H.
c) Ta có: \(\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + {90^0}\)
\(\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + {90^0}\)
Do đó, \(\widehat {BAE} = \widehat {DAC}\)
Tam giác BAE và tam giác DAC có:
\(AB = AD\left( {cmt} \right),\widehat {BAE} = \widehat {DAC}\left( {cmt} \right),AE = AC\left( {cmt} \right)\)
Do đó, \(\Delta BAE = \Delta DAC\left( {c - g - c} \right)\), suy ra \(\widehat {EBA} = \widehat {CDA}\)
Gọi J là giao điểm của DC và BE, ta có: \(\widehat {JBA} = \widehat {JDA}\)
Gọi P là giao điểm của AB và CD.
Tam giác ADP vuông tại A nên \(\widehat {PDA} + \widehat {DPA} = {90^0}\)
Mà \(\widehat {PDA} = \widehat {JBP},\widehat {DPA} = \widehat {BPJ}\) (đối đỉnh)
Do đó, \(\widehat {JBP} + \widehat {BPJ} = {90^0}\), suy ra \(\widehat {BJP} = {90^0}\) hay BE vuông góc với đường thẳng CD.
d) Tam giác ABD vuông cân tại A nên AK vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó, \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = {45^0}\)
Khi đó, \(\widehat {ABK} = \widehat {BAK} = {45^0}\) nên tam giác ABK vuông cân tại K, do đó, \(KA = KB\)
Ta có: \(\widehat {KAI} = \widehat {DAK} + \widehat {DAI} = {45^0} + \widehat {DAI} = {45^0} + \widehat {ABC}\)
Mặt khác \(\widehat {KBC} = \widehat {ABK} + \widehat {ABC} = {45^0} + \widehat {ABC}\)
Do đó, \(\widehat {KAI} = \widehat {KBC}\)
Tam giác AKI và tam giác BKC có:
\(AK = BK,\widehat {KAI} = \widehat {KBC},AI = BC\) (do \(\Delta ADI = \Delta BAC\))
Suy ra \(\Delta AKI = \Delta BKC\left( {c - g - c} \right)\) nên \(KI = KC\); \(\widehat {AKI} = \widehat {BKC}\)
Ta có: \(\widehat {AKC} + \widehat {BKC} = {90^0}\), mà \(\widehat {AKI} = \widehat {BKC}\) nên \(\widehat {AKC} + \widehat {AKI} = {90^0}\) hay \(\widehat {IKC} = {90^0}\) nên KC vuông góc với KI.
LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 8
PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2
Tải 10 đề kiểm tra 15 phút - Chương 10
Bài 8. Tình hình phát triển kinh tế - xã hội ở các nước châu Á
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8