SBT Toán 8 - Kết nối tri thức với cuộc sống tập 1

Câu hỏi 3.19 - Mục Bài tập trang 37

1. Nội dung câu hỏi

Cho tam giác ABC không vuông tại A. Dựng bên ngoài tam giác đó hai tam giác ABD, ACE vuông cân tại đỉnh A rồi dựng hình bình hành AEID.

a) Chứng minh hai tam giác ABC và DAI bằng nhau.

b) Chứng minh đường thẳng AI vuông góc với BC.

c) Chứng minh đường thẳng BE vuông góc với đường thẳng CD.

d) Gọi K là trung điểm của BD, chứng minh \(KC = KI\) và KC vuông góc với KI

(Gợi ý: Chứng minh hai tam giác AKI và BKC bằng nhau).

 

2. Phương pháp giải

Sử dụng kiến thức về tính chất hình bình hành để chứng minh: Hình bình hành có các cạnh đối bằng nhau và song song.

 

3. Lời giải chi tiết

a) Vì AEID là hình bình hành nên \(\widehat {ADI} + \widehat {DAE} = {180^0}\) (hai góc kề một cạnh của hình bình hành)

Ta có: \(\widehat {DAE} + \widehat {DAB} + \widehat {BAC} + \widehat {CAE} = {360^0}\)

Mà tam giác ABD vuông tại A, tam giác ACE vuông tại A nên \(\widehat {BAC} + \widehat {DAE} = {360^0} - {90^0} - {90^0} = {180^0}\)

Do đó, \(\widehat {ADI} = \widehat {BAC}\)

Tam giác ABD vuông cân tại A nên \(AB = AD\)

Tam giác ACE vuông cân tại A nên \(AC = AE\)

Vì AEID là hình bình hành nên \(AE = DI\), do đó \(DI = AC\)

Tam giác ADI và tam giác BAC có:

\(AB = AD\)(cmt), \(\widehat {ADI} = \widehat {BAC}\) (cmt), \(DI = AC\) (cmt)

Do đó, \(\Delta ADI = \Delta BAC\left( {c - g - c} \right)\)

b) Giả sử AI cắt BC ở H.

Ta có: \(\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = {180^0}\), mà \(\widehat {DAB} = {90^0}\) (do tam giác DAB vuông cân tại A). Suy ra \(\widehat {DAI} + \widehat {BAH} = {90^0}\)

Mà \(\widehat {DAI} = \widehat {ABC}\) (do \(\Delta ADI = \Delta BAC\)) nên \(\widehat {ABH} + \widehat {BAH} = {90^0}\)

Tam giác ABH có: \(\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = {180^0}\) nên \(\widehat {AHB} = {180^0} - \left( {\widehat {ABH} + \widehat {BAH}} \right) = {90^0}\)

Do đó, AI vuông góc với BC tại H.

c) Ta có: \(\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + {90^0}\)

\(\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + {90^0}\)

Do đó, \(\widehat {BAE} = \widehat {DAC}\)

Tam giác BAE và tam giác DAC có:

\(AB = AD\left( {cmt} \right),\widehat {BAE} = \widehat {DAC}\left( {cmt} \right),AE = AC\left( {cmt} \right)\)

Do đó, \(\Delta BAE = \Delta DAC\left( {c - g - c} \right)\), suy ra \(\widehat {EBA} = \widehat {CDA}\)

Gọi J là giao điểm của DC và BE, ta có: \(\widehat {JBA} = \widehat {JDA}\)

Gọi P là giao điểm của AB và CD.

Tam giác ADP vuông tại A nên \(\widehat {PDA} + \widehat {DPA} = {90^0}\)

Mà \(\widehat {PDA} = \widehat {JBP},\widehat {DPA} = \widehat {BPJ}\) (đối đỉnh)

Do đó, \(\widehat {JBP} + \widehat {BPJ} = {90^0}\), suy ra \(\widehat {BJP} = {90^0}\) hay BE vuông góc với đường thẳng CD.

d) Tam giác ABD vuông cân tại A nên AK vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó, \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = {45^0}\)

Khi đó, \(\widehat {ABK} = \widehat {BAK} = {45^0}\) nên tam giác ABK vuông cân tại K, do đó, \(KA = KB\)

Ta có: \(\widehat {KAI} = \widehat {DAK} + \widehat {DAI} = {45^0} + \widehat {DAI} = {45^0} + \widehat {ABC}\)

Mặt khác \(\widehat {KBC} = \widehat {ABK} + \widehat {ABC} = {45^0} + \widehat {ABC}\)

Do đó, \(\widehat {KAI} = \widehat {KBC}\)

Tam giác AKI và tam giác BKC có:

\(AK = BK,\widehat {KAI} = \widehat {KBC},AI = BC\) (do \(\Delta ADI = \Delta BAC\))

Suy ra \(\Delta AKI = \Delta BKC\left( {c - g - c} \right)\) nên \(KI = KC\); \(\widehat {AKI} = \widehat {BKC}\)

Ta có: \(\widehat {AKC} + \widehat {BKC} = {90^0}\), mà \(\widehat {AKI} = \widehat {BKC}\)  nên \(\widehat {AKC} + \widehat {AKI} = {90^0}\) hay \(\widehat {IKC} = {90^0}\) nên KC vuông góc với KI.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved