PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1

Bài 31 trang 162 Vở bài tập toán 8 tập 1

Đề bài

Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh rằng tổng diện tích của hai tam giác ABO và CDO bằng tổng diện tích của hai tam giác BCO và DAO.

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính diện tích tam giác, diện tích hình bình hành.

Diện tích hình bình hành bằng tích một cạnh với chiều cao tương ứng.

Diện tích tam giác bằng nửa tích cạnh đáy và chiều cao tương ứng.

Lời giải chi tiết

Đặt AB=CD=a. Kẻ OHAB, OH cắt CD ở K. 

Do HKAB và AB//CD nên HKCD.

Ta có OH+OK=HK

SABO+SCDO

=AB.12OH+12OK.CD

=12aOH+12a.OK

=12a(OH+OK)

=12a.HK      (1)

SABCD=AB.HK=a.HK      (2)

Từ (1) và (2) suy ra 

SABO+SCDO=12SABCD

Suy ra SBCO+SDAO=12SABCD

VậySABO+SCDO=SBCO+SDAO

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved