Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.
a) Hãy biểu diễn các vectơ \(\overrightarrow {AO} ,\overrightarrow {AO'} \) theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.
b) Chứng minh rằng \(\overrightarrow {A{\rm{D}}} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \).
Phương pháp giải - Xem chi tiết
Xen các điểm thức hợp và sử dụng các tính chất cộng véc tơ, quy tắc trung điểm,... để biểu diễn một véc tơ qua ba véc tơ không đồng phẳng trong không gian.
Lời giải chi tiết
a) *\(\displaystyle \overrightarrow {AO} = {1 \over 2}\overrightarrow {AC} = {1 \over 2}\overrightarrow {A'C'} \) \(\displaystyle = {1 \over 2}\left( {\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} } \right)\)
\(\displaystyle \overrightarrow {AO} = \overrightarrow {AB} + \overrightarrow {BO} = \overrightarrow {AB} + {1 \over 2}\overrightarrow {B{\rm{D}}} ,....\)
*\(\displaystyle \overrightarrow {AO} = {1 \over 2}\overrightarrow {AC} + \overrightarrow {AA'} \)
\(\displaystyle \eqalign{
& = {1 \over 2}\left( {\overrightarrow {AA'} + \overrightarrow {AC'} } \right) = {1 \over 2}\left( {\overrightarrow {AB'} + \overrightarrow {AD'} } \right) \cr
& = \overrightarrow {AA'} + \overrightarrow {A'B'} + {1 \over 2}\overrightarrow {B'D'} \cr
& = \overrightarrow {AB} + \overrightarrow {BB'} + {1 \over 2}\overrightarrow {B'D'} ,... \cr} \)
b) \(\displaystyle \overrightarrow {AD} + \overrightarrow {D'C'} + \overrightarrow {D'A'}\) \(\displaystyle = \overrightarrow {AD} + \overrightarrow {DC} + \overrightarrow {CB} \)
(vì \(\displaystyle \overrightarrow {D'C'} = \overrightarrow {DC} \) và \(\displaystyle \overrightarrow {D'A'} = \overrightarrow {CB} \)) nên \(\displaystyle \overrightarrow {A{\rm{D}}} + \overrightarrow {D'C'} + \overrightarrow {D'A'} = \overrightarrow {AB} \).
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Chuyên đề 1. Trường hấp dẫn
Chủ đề 1: Cân bằng hóa học
Chương 4. Chiến tranh bảo vệ tổ quốc và chiến tranh giải phóng dân tộc trong lịch sử Việt Nam (trước cách mạng tháng Tám năm 1945)
Giáo dục kinh tế
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11