1. Nội dung câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + a{\rm{ }}\left( {x < 1} \right)\end{array} \right.\)
a) Với \(a = 2\), xét tính liên tục của hàm số tại \(x = 1\).
b) Tìm \(a\) để hàm số liên tục trên \(\mathbb{R}\)
2. Phương pháp giải
a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) trong trường hợp \(a = 2\).
b) Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số phải liên tục tại \(x = 1\). Suy ra \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\). Từ đó tìm được \(a\).
3. Lời giải chi tiết
a) Với \(a = 2\) ta có \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{ }}\left( {x \ge 1} \right)\\x + 2{\rm{ }}\left( {x < 1} \right)\end{array} \right.\).
Xét \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} - x} \right) = {1^2} - 1 = 0\), \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 2} \right) = 3\).
Do \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\), nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\). Do đó, hàm số không liên tục tại \(x = 1\).
b) Với \(x < 1\) thì \(f\left( x \right) = x + a\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\left( { - \infty ,1} \right)\).
Với \(x > 1\) thì \(f\left( x \right) = {x^2} - x\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\left( {1, + \infty } \right)\).
Do đó, để \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì \(f\left( x \right)\) phải liên tục tại \(x = 1\).
Tức là \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)
Suy ra \(\mathop {\lim }\limits_{x \to {1^ - }} \left( {x + a} \right) = 0 \Rightarrow 1 + a = 0 \Rightarrow a = - 1\).
SBT Ngữ văn 11 - Cánh Diều tập 2
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 2
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở Biển Đông
Phần một: Giáo dục kinh tế
Chủ đề 4: Kĩ thuật bắt bóng của thủ môn và chiến thuật phòng thủ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11