SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 3 - Mục Bài tập trang 76

1. Nội dung câu hỏi

Cho hình chóp S. ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho \(HA = 2HB\). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng \({60^0}\). Tính khoảng cách giữa hai đường thẳng SA và BC theo a.


2. Phương pháp giải

- Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính:

+ Nếu đường thẳng a vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a với (P) bằng \({90^0}\).

+ Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a và hình chiếu a’ của a trên (P) gọi là góc giữa đường thẳng a và (P).

- Sử dụng kiến thức về khoảng cách giữa hai đường thẳng chéo nhau để tính: Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó, kí hiệu d(a, b).

 

3. Lời giải chi tiết 

Áp dụng định lí côsin vào tam giác AHC có:

\(C{H^2} \) \( = A{C^2} + A{H^2} - 2AC.AH.\cos \widehat {CAH}\)

\( \Rightarrow C{H^2} \) \( = {a^2} + {\left( {\frac{{2a}}{3}} \right)^2} - 2a.\frac{{2a}}{3}.\cos {60^0} \) \( = \frac{{7{a^2}}}{9} \Rightarrow CH \) \( = \frac{{a\sqrt 7 }}{3}\)

Vì \(SH \bot \left( {ABC} \right)\) nên HC là hình chiếu vuông góc của SC trên mặt phẳng (ABC)

Do đó, \(\left( {SC,\left( {ABC} \right)} \right) \) \( = \left( {SC,HC} \right) \) \( = \widehat {SCH} \) \( = {60^0}\)

Trong tam giác SCH vuông tại H có: \(SH \) \( = CH.\tan {60^0} \) \( = \frac{{a\sqrt 7 }}{3}.\sqrt 3 \) \( = \frac{{a\sqrt {21} }}{3}\)

Qua A kẻ đường thẳng song song với BC, I là hình chiếu của H trên đường thẳng đó.

Khi đó, BC//AI. Suy ra: \(d\left( {BC,SA} \right) \) \( = d\left( {BC,\left( {SAI} \right)} \right) \) \( = d\left( {B,\left( {SAI} \right)} \right) \) \( = \frac{3}{2}d\left( {H;\left( {SAI} \right)} \right)\)

Gọi K là hình chiếu của H trên SI.

Vì \(SH \bot AI,AI \bot HI \Rightarrow AI \bot \left( {SHI} \right) \Rightarrow AI \bot KH\)

Mà \(HK \bot SI \Rightarrow HK \bot \left( {SAI} \right) \Rightarrow d\left( {H,\left( {SAI} \right)} \right) \) \( = HK\)

Ta có: \(\widehat {HAI} \) \( = {180^0} - \left( {{{60}^0} + {{60}^0}} \right) \) \( = {60^0}\)

Tam giác AHI vuông tại I nên \(HI \) \( = HA.\sin {60^0} \) \( = \frac{{2a}}{3}.\frac{{\sqrt 3 }}{2} \) \( = \frac{{a\sqrt 3 }}{3}\)

Tam giác SIH vuông tại H có: \(\frac{1}{{H{K^2}}} \) \( = \frac{1}{{H{S^2}}} + \frac{1}{{H{I^2}}} \) \( = \frac{9}{{21{a^2}}} + \frac{9}{{3{a^2}}} \) \( = \frac{{24}}{{7{a^2}}} \Rightarrow HK \) \( = \frac{{a\sqrt {42} }}{{12}}\)

Do đó: \(d\left( {BC,SA} \right) \) \( = \frac{{a\sqrt {42} }}{8}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved