Bài 3 trang 48

Bài 3 trang 48

Đề bài

Xét dấu của mỗi tam thức bậc hai sau:

a) \(f\left( x \right) = 3{x^2} - 4x + 1\)

b) \(f\left( x \right) = 9{x^2} + 6x + 1\)

c) \(f\left( x \right) = 2{x^2} - 3x + 10\)

d) \(f\left( x \right) =  - 5{x^2} + 2x + 3\)

e) \(f\left( x \right) =  - 4{x^2} + 8x - 4\)

g) \(f\left( x \right) =  - 3{x^2} + 3x - 1\)

Phương pháp giải - Xem chi tiết

Sử dụng biệt thức thu gọn \(\Delta ' = {\left( {b'} \right)^2} - ac\) với \(b = 2b'\).

+ Nếu \(\Delta ' < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số a vời mọi \(x \in \mathbb{R}\).

+ Nếu \(\Delta ' = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số a vời mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{{b'}}{a}} \right\}\).

+ Nếu \(\Delta ' > 0\) thì \(f\left( x \right)\) có 2 nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số a với mọi x thuộc các khoảng \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\);

\(f\left( x \right)\) trái dấu với hệ số a với mọi x thuộc các khoảng \(\left( {{x_1};{x_2}} \right)\)

Lời giải chi tiết

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved