1. Nội dung câu hỏi
Chứng minh các đẳng thức lượng giác sau:
a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) = \frac{{\sqrt 2 }}{2}\sin 2x\);
b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\).
2. Phương pháp giải
a) + Sử dụng kiến thức công thức tổng thành tích để chứng minh: \(\sin \alpha + \sin \beta = 2\sin \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2};\sin \alpha - \sin \beta = 2\cos \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}\)
+ Sử dụng kiến thức về công thức góc nhân đôi để chứng minh: \(\sin 2\alpha = 2\sin \alpha \cos \alpha \)
b) Sử dụng kiến thức về công thức biến đổi tích thành tổng để chứng minh \(\cos \alpha \cos \beta = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]\)
Sử dụng kiến thức về công thức cộng để chứng minh \(\cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \).
3. Lời giải chi tiết
a) \({\sin ^2}\left( {x + \frac{\pi }{8}} \right) - {\sin ^2}\left( {x - \frac{\pi }{8}} \right) \) \( = \left[ {\sin \left( {x + \frac{\pi }{8}} \right) - \sin \left( {x - \frac{\pi }{8}} \right)} \right]\left[ {\sin \left( {x + \frac{\pi }{8}} \right) + \sin \left( {x - \frac{\pi }{8}} \right)} \right]\)
\( = 2\sin \frac{\pi }{8}\cos x.2\sin x\cos \frac{\pi }{8} \) \( = 2\sin \frac{\pi }{4}\cos x\sin x \) \( = \frac{{\sqrt 2 }}{2}\sin 2x\)
b) \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) \) \( = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\)
\( \Leftrightarrow 2\cos x\cos y\cos \left( {x - y} \right) - {\cos ^2}\left( {x - y} \right) \) \( = {\cos ^2}x - {\sin ^2}y\)
Ta có: \(2\cos x\cos y\cos \left( {x - y} \right) - {\cos ^2}\left( {x - y} \right) \) \( = \cos \left( {x - y} \right)\left[ {2\cos x\cos y - \cos \left( {x - y} \right)} \right]\)
\( = \cos \left( {x - y} \right)\left( {\cos x\cos y - \sin x\sin y} \right) \) \( = \cos \left( {x - y} \right)\cos \left( {x + y} \right)\)
\( = \frac{1}{2}\left( {\cos 2x + \cos 2y} \right) \) \( = \frac{1}{2}\left( {1 - 2{{\sin }^2}y + 2{{\cos }^2}x - 1} \right) \) \( = {\cos ^2}x - {\sin ^2}y\)
Vậy \({\sin ^2}y + 2\cos x\cos y\cos \left( {x - y} \right) \) \( = {\cos ^2}x + {\cos ^2}\left( {x - y} \right)\).
Tải 10 đề thi học kì 2 Sinh 11
CHUYÊN ĐỀ 2: CHIẾN TRANH VÀ HÒA BÌNH TRONG THẾ KỈ XX
Đề minh họa số 1
Đề cương ôn tập học kì 2
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11