1. Nội dung câu hỏi
Tìm tập xác định của các hàm số:
a) \(y = {\log _2}\left( {x - 4} \right)\);
b) \(y = {\log _{0,2}}\left( {{x^2} + 2x + 1} \right)\);
c) \(y = {\log _5}\frac{x}{{x - 1}}\).
2. Phương pháp giải
Sử dụng kiến thức về tập xác định của hàm số \(y = {\log _a}x\).
3. Lời giải chi tiết
a) Hàm số \(y = {\log _2}\left( {x - 4} \right)\) xác định khi \(x - 4 > 0 \Leftrightarrow x > 4\)
Tập xác định của hàm số \(y = {\log _2}\left( {x - 4} \right)\) là: \(D = \left( {4; + \infty } \right)\).
b) Hàm số \(y = {\log _{0,2}}\left( {{x^2} + 2x + 1} \right)\) xác định khi \({x^2} + 2x + 1 > 0 \Leftrightarrow {\left( {x + 1} \right)^2} > 0 \Leftrightarrow x \ne - 1\)
Tập xác định của hàm số \(y = {\log _{0,2}}\left( {{x^2} + 2x + 1} \right)\) là: \(D = \left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right)\).
c) Hàm số \(y = {\log _5}\frac{x}{{x - 1}}\) xác định khi \(\frac{x}{{x - 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\x - 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\x - 1 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x > 0\\x > 1\end{array} \right.\\\left\{ \begin{array}{l}x < 0\\x < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < 0\end{array} \right.\)
Tập xác định của hàm số \(y = {\log _5}\frac{x}{{x - 1}}\) là: \(D = \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\).
Chương 4: Hydrocarbon
Chủ đề 3. Thực hiện các hoạt động xây dựng và phát triển nhà trường
Bài 10. Kĩ thuật sử dụng lựu đạn
Tải 10 đề thi học kì 2 Sinh 11
Review Unit 8
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11