Câu hỏi 28 - Mục Bài tập trang 63

1. Nội dung câu hỏi

Tọa độ giao điểm của hai đường thẳng \({d_1}:y = \frac{{1 - 3x}}{4}\) và \({d_2}:y = - \left( {\frac{x}{3} + 1} \right)\) là:
A. \(\left( {0; - 1} \right)\)
B. \(\left( { - \frac{7}{3};2} \right)\)
C. \(\left( {0;\frac{1}{4}} \right)\)
D. \(\left( {3; - 2} \right)\)

 

2. Phương pháp giải 

Vẽ đồ thị hàm số của cả 2 đường thẳng sau đó xác định tọa độ giao điểm.

 

3. Lời giải chi tiết

Ta có: \({d_1}:y = \frac{{1 - 3x}}{4} =  - \frac{3}{4}x + \frac{1}{4}\)

\({d_2}:y =  - \left( {\frac{x}{3} + 1} \right) =  - \frac{1}{3}x - 1\)

Xét đồ thị hàm số \({d_1}:y = \frac{{ - 3}}{4}x + \frac{1}{4}\)

Chọn \(x = 0\) suy ra \(y = \frac{1}{4}\)

Chọn \(y = 0\) suy ra \(x = \frac{1}{3}\)

Vậy đồ thị hàm số  \({d_1}:y = \frac{{ - 3}}{4}x + \frac{1}{4}\) là đường thẳng đi qua hai điểm \(A\left( {0;\frac{1}{4}} \right),B\left( {\frac{1}{3};0} \right)\)

Xét đồ thị hàm số \({d_2}:y =  - \frac{1}{3}x - 1\)

Chọn \(x = 0\) suy ra \(y =  - 1\)

Chọn \(y = 0\) suy ra \(x =  - 3\)

Vậy đồ thị hàm số  \({d_2}:y =  - \frac{1}{3}x - 1\) là đường thẳng đi qua hai điểm \(C\left( {0; - 1} \right),D\left( { - 3;0} \right)\)

Vẽ trên mặt phẳng tọa độ \(Oxy\):

 

Ta xác định được giao điểm \(E\left( {3; - 2} \right)\).

→   Đáp án D.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved