PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 28 trang 160 SBT toán 9 tập 1

Đề bài

Tam giác \(ABC\) nội tiếp đường tròn \((O)\) có \(\widehat A > \widehat B > \widehat C.\) Gọi \(OH, OI, OK\) theo thứ tự là khoảng cách từ \(O\) đến \(BC,\)\( AC,\)\( AB.\) So sánh các độ dài \(OH, OI, OK.\) 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Trong một tam giác, cạnh nào đối diện với góc lớn hơn thì cạnh đó lớn hơn.

+) Trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

Lời giải chi tiết

 

Tam giác \(ABC\) có \(\widehat A > \widehat B > \widehat C\) nên suy ra:

\(BC > AC > AB\) (cạnh đối diện góc lớn hơn thì lớn hơn)

Ta có \(AB,\) \(BC,\) \(AC\) lần lượt là các dây cung của đường tròn \((O)\)

Mà \(BC > AC > AB\) nên suy ra:

\(OH < OI < OK\) ( dây lớn hơn thì gần tâm hơn).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved