Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Hãy biến đổi các tỉ số lượng giác sau đây thành tỉ số lượng giác của các góc nhỏ hơn 45° ;
\(\sin 75^\circ ,\cos 53^\circ ,\sin 47^\circ 20',\)\(tg62^\circ ,\cot g82^\circ 45'.\)
Phương pháp giải - Xem chi tiết
Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Với hai góc \(\alpha ,\beta \) sao cho \(\alpha + \beta = 90^\circ \)
Ta có: \(\sin \alpha = \cos \beta ;\) \(\sin \beta = \cos \alpha ;\)\(\tan \alpha = \cot \beta ;\) \(\tan \beta = \cot \alpha. \)
Lời giải chi tiết
Vì \(75^\circ + 15^\circ = 90^\circ \) nên \(\sin 75^\circ = \cos 15^\circ \)
Vì \(53^\circ + 37^\circ = 90^\circ \) nên \(\cos 53^\circ = \sin 37^\circ \)
Vì \(47^\circ 20' + 42^\circ 40' = 90^\circ \) nên \(\sin 47^\circ 20' = \cos 42^\circ 40'\)
Vì \(62^\circ + 28^\circ = 90^\circ \) nên \(tg62^\circ = \cot 28^\circ \)
Vì \(82^\circ 45' + 7^\circ 15' = 90^\circ \) nên \(\cot 82^\circ 45' = tg7^\circ 15'\)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 9
Bài 26
Bài 17: Nghĩa vụ bảo vệ tổ quốc
Chương 1. Các loại hợp chất vô cơ
Bài 30