PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2

Bài 27 trang 90 Vở bài tập toán 8 tập 2

Đề bài

Chứng minh rằng nếu tam giác  ABC đồng dạng với tam giác  ABC theo tỉ số k thì tỉ số của hai đường phân giác tương ứng của chúng cũng bằng k.

Phương pháp giải - Xem chi tiết

Áp dụng:

- Định lí: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đô đồng dạng.

- Tính chất hai tam giác đồng dạng, tia phân giác.

Lời giải chi tiết

Chứng minh:

Từ giả thiết  ΔABCΔABC theo tỉ số k, suy ra

A^=A^;B^=B^;C^=C^;  ABAB=ACAC=BCBC=k.

Xét hai tam giác  ABD và  ABD:

A1^=12A^;A1^=12A^; mà  A^=A^ (theo kết quả trên).

Do đó  A1^=A1^ (1)

Ta lại có:  B^=B^ (2) (theo kết quả trên).

Từ định lí (của trường hợp đồng dạng thứ ba) suy ra  ΔABDΔABD

Suy ra ADAD=ABAB=k (đpcm).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved