1. Nội dung câu hỏi
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = - 2\), \({u_{n + 1}} = \frac{{{u_n}}}{{1 - {u_n}}}\) với \(n \in {\mathbb{N}^*}\).
Đặt \({v_n} = \frac{{{u_n} + 1}}{{{u_n}}}\) với \(n \in {\mathbb{N}^*}\).
a) Chứng minh rằng dãy số \(\left( {{v_n}} \right)\) là một cấp số cộng. Tìm số hạng đầu, công sai của cấp số cộng đó.
b) Tìm công thức của \({v_n}\), \({u_n}\) tính theo \(n\).
c) Tính tổng \(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + ... + \frac{1}{{{u_{20}}}}\).
2. Phương pháp giải
a) Chỉ ra \({v_n} = 1 + \frac{1}{{{u_n}}}\), \({v_{n + 1}} = \frac{1}{{{u_n}}}\), từ đó chứng minh được \(\left( {{v_n}} \right)\) là cấp số cộng với \({v_1} = \frac{1}{2}\) và \(d = - 1\).
b) Do \(\left( {{v_n}} \right)\) là cấp số cộng nên \({v_n} = {v_1} + \left( {n - 1} \right)d\), từ đó ta tìm được công thức của \({v_n}\) theo \(n\). Do \({v_n} = 1 + \frac{1}{{{u_n}}}\) nên ta sẽ tìm được công thức của \({u_n}\) theo \(n\).
c) Do \({v_n} = 1 + \frac{1}{{{u_n}}}\) nên \(S = {v_1} + {v_2} + {v_3} + ... + {v_{20}} - 20\)
3. Lời giải chi tiết
a) Ta có:
\({v_n} = \frac{{{u_n} + 1}}{{{u_n}}} = 1 + \frac{1}{{{u_n}}}\), \({v_{n + 1}} = 1 + \frac{1}{{{u_{n + 1}}}} = 1 + \frac{1}{{\frac{{{u_n}}}{{1 - {u_n}}}}} = 1 + \frac{{1 - {u_n}}}{{{u_n}}} = \frac{{{u_n} + 1 - {u_n}}}{{{u_n}}} = \frac{1}{{{u_n}}}\)
\( \Rightarrow {v_{n + 1}} - {v_n} = \frac{1}{{{u_n}}} - \left( {1 + \frac{1}{{{u_n}}}} \right) = - 1\).
Như vậy \(\left( {{v_n}} \right)\) là cấp số cộng với \(d = - 1\).
Số hạng đầu của dãy \(\left( {{v_n}} \right)\) là \({v_1} = 1 + \frac{1}{{{u_1}}} = 1 + \frac{1}{{ - 2}} = \frac{1}{2}\)
b) Vì \(\left( {{v_n}} \right)\) là cấp số cộng với số hạng đầu \({v_1} = \frac{1}{2}\) và công sai \(d = - 1\), nên ta có \({v_n} = {v_1} + \left( {n - 1} \right)d = \frac{1}{2} + \left( {n - 1} \right)\left( { - 1} \right) = \frac{1}{2} + 1 - n = \frac{{3 - 2n}}{2}\).
Do \({v_n} = 1 + \frac{1}{{{u_n}}}\) nên \(\frac{{3 - 2n}}{2} = 1 + \frac{1}{{{u_n}}} \Rightarrow \frac{1}{{{u_n}}} = \frac{{1 - 2n}}{2} \Rightarrow {u_n} = \frac{2}{{1 - 2n}}\)
c) Ta có \({v_n} = 1 + \frac{1}{{{u_n}}}\) nên:
\(S = \frac{1}{{{u_1}}} + \frac{1}{{{u_2}}} + \frac{1}{{{u_3}}} + ... + \frac{1}{{{u_{20}}}} = \left( {{v_1} - 1} \right) + \left( {{v_2} - 1} \right) + \left( {{v_3} - 1} \right) + ... + \left( {{v_{20}} - 1} \right)\)
\( = \left( {{v_1} + {v_2} + {v_3} + ... + {v_{20}}} \right) - 20 = \frac{{\left( {2{v_1} + 19d} \right).20}}{2} - 20 = 10\left( {2.\frac{1}{2} - 19} \right) - 2 = - 200\)
Chương III. Điện trường
Chương 4. Hydrocarbon
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Bài 6: Sulfur và sulfur dioxide
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11